ИМПУЛЬСНЫЕ НЕЙТРОННЫЕ И РЕНТГЕНОВСКИЕ ИСТОЧНИКИ С ЛАЗЕРНЫМ ИНИЦИИРОВАНИЕМ ДЛЯ НАУЧНЫХ ИССЛЕДОВАНИЙ И РЕШЕНИЯ ЗАДАЧ ОБЕСПЕЧЕНИЯ СОХРАННОСТИ ЯДЕРНЫХ МАТЕРИАЛОВ

Андреа Фавалли, Сасикумар Паланияппан, Роберт Рейновски

Лос-Аламосская национальная лаборатория, Лос-Аламос, США

> "Забабахинские научные чтения" Россия, г. Снежинск Март 2019 г.

Нейтронные и мегаэлектронвольтные рентгеновские источники с лазерным инициированием для научных исследований и решения задач глобальной безопасности

- Работая на субпетаваттной лазерной установке Trident в Лос-Аламосе, ученые использовали лазерное излучение со сверхвысокой плотностью потока для получения высокоинтенсивных нейтронных и рентгеновских вспышек малой длительности.
- В число областей применения этого нового источника нейтронов входят повышение эффективности существующих технических средств и методов <u>обнаружения</u> <u>"подпольных" ядерных материалов и контроль выполнения условий международных</u> <u>договоров</u>, а также <u>создание благоприятных возможностей для нового поколения</u> экспериментов <u>в ядерной физике и нейтронной терапии</u>.

16 августа 2015 г. Новое достижение Лос-Аламосской национальной лаборатории: <u>http://www.lanl.gov/newsroom/picture-of-the-week/pic-week-22.php</u>

Список соавторов

Лос-Аламосская национальная лаборатория

И. Дж. Олбрайт, Дж. Бриджуотер, Т. Беррис-Мог, М. Э. Эспи, Л. Фолк(1), Х. Ч. Фернандез, Д. К. Готье, Н. Гулер(2), К. Э. Гамильтон, Д. Хенцлова, Дж. Ф. Хьюнетер, Л. Д. Янакиев, М. Ильев, Р. П. Джонсон, К. Э. Кёлер, Р. О. Нельсон, П. Санти, Д. В. Шмидт, Т. Шимада, М. Суинхоу, Т. Н. Таддеучи, Б. Дж. Тобиас, Г. А. Иурден, Л. Ин

Университет г. Рочестер

В. Сефков

Политехнический университет г. Дармштадт (Германия)

М. Рот, О. Депперт, А. Кляйншмидт

Оук-Риджская национальная лаборатория

С. Крофт

(1)В настоящее время работает в Центре им. Гельмгольца, Дрезден-Россендорф (Германия) (2)В настоящее время - сотрудник компании Spectral Sciences (США, г. Бостон) и приглашенный научный сотрудник отделения ядерной техники и нераспространения (NEN-1) Лос-Аламосской национальной лаборатории

Программа руководимых лабораторией научно-исследовательских и опытно-конструкторских работ

ЦЕЛЬ: Изучение технической осуществимости активной идентификации материала при помощи нескольких

возбуждаемых лазером контрольных изотопов

Системы активного обнаружения, предназначенные для выявления присутствия специального ядерного материала (СЯМ), включая экранированные материалы:

- Сигналы в установках пассивного обнаружения слабы, особенно в случае ВОУ
- Для инициирования деления используются внешние потоки нейтронов
- Для получения изображения содержимого используется рентгеновское излучение

Источник нейтронов:

Требуется быстродействующий, транспортируемый, безопасный в эксплуатации источник нейтронов, характеризуемый возможностью регулирования уровня <u>энергии</u> и выработкой <u>высокоинтенсивного направленного потока</u> <u>нейтронов</u>

Рентгенографирование:

Требуется коллимированный источник излучения высокой интенсивности (мегаэлектронвольты), имеющий малые размеры и обеспечивающий <u>высокое</u> <u>пространственное разрешение</u>

Ускорение ионов воздействием лазерного излучения - это техническая основа получения интенсивных нейтронных вспышек для целей идентификации материала

Лазерное излучение взаимодействует с электронами мишени

- Пондеромоторная сила –∇*E*²
- Электроны движутся преимущественно вперед Результат: нагрев, давление, ток

Заселенность релятивистскими электронами (е⁻), выведенными из равновесия

- $I\lambda^2 > 1.33 \times 10^{18} \, \text{Bt} \cdot \text{cm}^{-2} \, \mu\text{M}^2$
- Кинетическая энергия электрона превосходит его массу покоя
- Направленное движение электронов, т.е. ток
- Релятивистская прозрачность с мишенями из фольги нанометровой толщины (эффективное объемное взаимодействие: ≈80%)

Релятивистские электроны взаимодействуют с ионами

- Разделение зарядов
- Схема получения ионных потоков высокой интенсивности при воздействии лазерным излучениям с относительно малой энергией ([BOA])*
- Нестабильность, создающая плазменную волну, ускоряющую ионы

Направленный пучок ионов

- Ионы с энергиями в диапазонах МэВ и ГэВ, протоны с энергией ≈100 МэВ
- Эффективная передача энергии лазерного излучения ионам (≈10%)
- Широкий или узкий поток энергии
- Время возникновения, измеряемое в пикосекундах

Е - напряженность электрического поля, I - мощность лазерного излучения, λ - длина волны лазерного излучения

*L. Yin et al., PRL 107 (2011), L. Yin et al, PoP 18 (2011); B.J.Albright et al., PoP (2007), L. Yin et al., PoP (2007), B.J.Albright, L. Yin, & A.Favalli, Laser and Particle Beam (2018)

Возбуждаемый лазером поток дейтронов (ионов), бомбардируя бериллиевый конвертер, порождает мощный нейтронный пучок

Эксперименты на установке Trident позволяют проанализировать генерацию нейтронов под действием вызванных лазерным излучением ионных пучков

Нейтронная диагностика:

 Пузырьковые детекторы (нечувствительны к гаммаизлучению) → малая точность/выход нейтронов в широкоугольном пучке

 Время пролета нейтронов (NTOF) (nTOF) - пластиковый сцинтиллятор + ФЭУ → спектр энергий

•Детекторы на изотопе гелия ³Не + полиэтилен → признаки деления и точно определяемый выход нейтронов в узком пучке

Для обработки мощного динамического потока нейтронов в течение одного импульса установки Trident спроектированы мониторы времени пролета нейтронов и приборы контроля мгновенных нейтронов.

Инициируемый лазером источник нейтронов

Новаторская конструкция нейтронного преобразователя (на основе бериллия) оптимизирует преобразование вызванных лазерным излучением ионных пучков в нейтронные вспышки.

- Преобразователь, примененный на первом этапе: цилиндр (из бериллия) диаметром 2 см и глубиной 4 см
- Модифицированная конструкция бериллиевого преобразователя, характеризуемая гибкой и возможностью изменять компоновку, состоит из дисков: (3 диска толщиной по 3 мм, 2 диска толщиной по 6 мм и 1 диск толщиной 12 мм (все диски имеют диаметр 5 см) - и построена на основе моделирования взаимодействий частиц с помощью программы MCNPX*
- Вольфрамовое кольцо, охватывающее бериллиевые детали, действует как отражатель и радиатор (n,2n),(n,3n)...*
- Радиохромные пленки, используемые в качестве средства ионной диагностики и размещенные между дисками вдоль преобразователя, предназначены для подтверждения результатов моделирования с помощью программы MCNPX

*A.Favalli et al., LAUR-14-25881; LAUR-14-25768; A.Favalli et al., IEEE Nuclear Science Symposium, 2014 Seattle

Определение параметров генерирования нейтронов, спектра энергий и углового распределения

ГЕНЕРИРОВАНИЕ НЕЙТРОНОВ НА УСТАНОВКЕ TRIDENT >10¹⁰ нейтронов на стерадиан за 1 импульс

Neutron beam distribution Neutron beam distribution 1010 1010 Converter: Be Cyl. 1e10 Neutrons/MeV 2 cm Dia., 4 cm long 8e9 10⁹ 10⁹ Trident f/1.5 6e9 Neutron 4e9 spectrum 108 108 2e9 n/sr 107 107 10⁶ 10⁶ Converter: Be. Cyl. 5 cm Dia., 4 cm long Trident f/1.5 105 10⁵ 10 100 0.1 Energy (MeV) Energy (MeV)

Спектр энергий и угловое распределение можно перестраивать выбором сочетания (1) оптики и материала мишени и (2) формы бериллиевого преобразователя

Применение инициируемого лазером источника нейтронов для активной идентификации материала

Активная идентификация:

"Пощупаем и посмотрим, что произойдет"

Принцип: инициированное нейтронами деление в ядерном материале (например, ²³⁵U или ²³⁹Pu).

Основные наиболее примечательные демаскирующие признаки деления:

- Мгновенные нейтроны деления
- Запаздывающие нейтроны деления

Мгновенные нейтроны: признак, наблюдаемый в процессе идентификации ядерных материалов (нейтроны, испускаемые в процессе деления ядер)
 Запаздывающие нейтроны : запаздывающие нейтроны образуются в результате распада продуктов деления на измеряемых секундами или минутами интервалах после деления ядер (поэтому достигается надежное разграничение от идентифицирующих нейтронов)

Демаскирующий признак мгновенных нейтронов:

Преимущество: генерация большого числа нейтронов (в среднем 2 - 3 нейтрона на каждое деление)

Недостаток: осложненные измерение параметров и различение от идентифицирующих нейтронов

Демаскирующий признак запаздывающих нейтронов:

Преимущество: измерение параметров проще, чем в случае мгновенных нейтронов деления *Недостаток*: очень низкий выход нейтронов от каждого деления (например, 0,017 для ²³⁵U и 0,0065 для ²³⁹Pu).

Для активной идентификации материала применение источников нейтронов с инициированием лазерным излучением особенно целесообразно

- Некоторые особенности источника нейтронов, инициированных коротким импульсом лазерного излучения:
- Генерирование кратковременных, но высокоинтенсивных импульсных нейтронных потоков, позволяющее получать высокие значения отдаваемой энергии и отношения сигнал/шум
- Направленность, увеличивающая используемый для идентификации сигнал и способствующая обеспечению безопасности операторов
- Перестраиваемость энергии, удобная для идентификации при наличии защитных экранов разных видов и толщин
- Возможность создания источника с габаритными размерами, удобными для перемещения (транспортировки)

Демонстрация активной идентификации материала при использовании инициируемого лазером источника нейтронов и детектирования запаздывающих нейтронов

Счетчики нейтронных совпадений

 HLNCC-II: состоит из единственного кольца, образованного 18 детекторами изотопа ³Не, запрессованными в полиэтилен с кадмиевой облицовкой (эффективность 17,5%, мертвое время 43 мкс)

• AWCC: двойное кольцо из 42 детекторов изотопа ³He, запрессованных в полиэтилен с кадмиевой облицовкой (эффективность 32,8%, мертвое время 50 мкс)

Счетчик нейтронных совпадений

A Favalli et al., LA-UR-13 (2013). LANL news release (2013). A.Favalli et al., LA-UR-14-21661 (2014)

Исследованные образцы урана

- Обедненный уран с массой до 4,5 кг
- Образцы обогащенного урана со степенью обогащения до массовой доли 65% по изотопу ²³⁵U

 Два счетчика нейтронных совпадений, в каждом из которых используется кольцо пропорциональных детекторов изотопа ³He, заделанных в полиэтилен

В показанном слева детекторе можно видеть урановый образец
Детектор, расположенный справа, дает опорный отсчет

Идентификация образца высокообогащенного урана (масса 990 г, массовая доля изотопа ²³⁵U 65%)

Быстрое исследование (*с* внутренней кадмиевой гильзой)

Тепловой режим (без кадмиевой гильзы)

В качестве демаскирующего признака выбраны запаздывающие нейтроны, поскольку они характерны для процесса деления ядер (лишь немногие иные процессы могут порождать запаздывающие нейтроны)

Идентификация образца менее обогащенного урана (масса 990 г, массовая доля изотопа ²³⁵U **38%**)

кадмиевой гильзой)

Образцы обогащенного урана: массовая доля 12 - 65%

Перспективы применения метода идентификации, основанного на делении, вызванном мгновенными нейтронами при воздействии одного импульса лазера

Преимущества:

- Повышение чувствительности обнаружения ядерного материала, обусловленное испусканием мгновенных нейтронов деления, почти в 100 раз превышающим выход запаздывающих нейтронов
- Значительное увеличение отношения сигнала к шуму в осложненных условиях проведения измерений, например, при высокой интенсивности испускания фоновых нейтронов, наблюдаемой в ситуации активной идентификации плутония

Перспективы применения метода идентификации, основанного на делении, вызванном мгновенными нейтронами при воздействии одного импульса лазера

На этапе экспериментов в **июле - августе 2015 г.**: мгновенные нейтроны деления? (Мы получили разрешение на использование образца плутония массой 170 г, который содержал около 150 г изотопа ²³⁹Pu)

Впервые: нами обнаружены мгновенные нейтроны деления от образцов изотопа ²³⁵U и образца изотопа ²³⁹Pu (*) (окончательные результаты анализируются, графики имеют предварительный характер) * В случае плутония обнаружен также сигнал от задержанных нейтронов Разработка источника инициируемого лазером рентгеновского излучения для рентгенографии в процессе активной идентификации

Мы изучали две разные схемы получения рентгеновского излучения с энергией в диапазоне МэВ на установке Trident

<u>Схема 1: Комбинированная схема (объединение мишени с</u>

S. Palaniyappan et al, (2019) Laser and Particle Beams

Комбинированная мишень дает мощное рентгеновское излучение с энергией в диапазоне МэВ •Комбинированная (из листа

- Комбинированная (из листа тантала толщиной 1 мм) мишень-преобразователь работает значительно эффективнее тандемной мишени
- Значительно более простая схема
- Очень легко воспроизводима
- Не требует <u>высокого</u> <u>контраста лазерного</u> <u>излучения</u>

3 x10¹² фотонов на импульс

1 Дж энергии рентгеновского излучения с энергией в диапазоне МэВ, получаемый из 80 Дж энергии падающего потока лазерного излучения (к.п.д. ≈1%)

Вывод о 80-мкм размере рентгеновского источника по результатам рентгенографии высококонтрастной мишени для измерения разрешающей способности (вольфрам, толщина 6 мм) Объект на пленке R2DTO

0 CM 10 CM Увеличение в 5,8 раза

Анализ, выполненный с помощью прикладной программы Bayesian Inference Engine (BIE), позволяет сделать вывод о том, что источник рентгеновского излучения с длительностью на уровне половины максимальной мощности имеет размер 80 мкм

Теневое рентгенографическое изображение объекта в калейдоскопе с линзой AWE, полученное при энергии излучения в диапазоне МэВ на рентгенографической установке DARHT (слева) и лазерной установке Trident (справа), - наглядное подтверждение высокого разрешения

DARHT Axis 1, 19mm cathode: ~750μm source size TRIDENT: 125 μ m features resolved (measurement limited by detector-pixel size)

Выводы по источнику нейтронов, инициированных коротким импульсом лазерного излучения

• На базе лазерной установки TRIDENT наглядно подтверждена техническая осуществимость источника нейтронов с высоким выходом.

Активная идентификация при помощи инициированных лазерным излучением нейтронов:

- Впервые экспериментально доказана возможность активной идентификации ядерных материалов при использовании источника нейтронов, инициированных коротким импульсом лазерного излучения
- Измерены параметры образцов из обогащенного (от ≈12% до 65%) урана и получена калибровочная кривая зависимости массы ²³⁵U от числа импульсов счета (демаскирующий признак запаздывающих нейтронов)
- Впервые обнаружен признак запаздывающих нейтронов от ядерного материала при воздействии единственным идентифицирующим импульсом от лазера
- Впервые малое количество плутония (150 г) обнаружено путем подсчета запаздывающих нейтронов при использовании источника нейтронов, инициированных одним импульсом лазерного излучения

Выводы по источнику рентгеновского излучения, имеющего энергию в диапазоне МэВ и инициированного коротким импульсом лазерного излучения

- На базе лазерной установки TRIDENT наглядно подтверждена техническая осуществимость источника рентгеновского излучения, имеющего энергию в диапазоне МэВ и инициированного коротким импульсом лазерного излучения (≈10¹³ фотонов в секунду; расхождение пучка 0,1 ср).
- Высокий к.п.д. ≈1% (1 Дж энергии рентгеновского излучения с энергией в диапазоне МэВ, получаемый из 80 Дж энергии падающего потока лазерного излучения)
- На мишенях, предназначенных для измерения разрешения, наглядно доказано, что метод рентгенографии дает высокую разрешающую способность, достаточную для активной идентификации

Практическое внедрение метода

Перспективные изучаемые нами области применения:

- Нейтронная идентификация грузов (обнаружение специальных ядерных материалов, взрывчатых веществ и наркотиков)
- Обнаружение методами формирования изображений
- Контроль выполнения условий международных договоров (по признакам присутствия боеголовок и ядерных материалов) и управление ядерным арсеналом с сертификацией
- Анализ отработавшего топлива (в хранилище, в защитном контейнере для радиоактивных отходов и обломков, образовавшихся при ядерных авариях, например, на АЭС в Фукушиме)
- Нейтронная терапия
- Эксперименты в области ядерной физики (например, нейтронная резонансная спектроскопия, измерения эффективного сечения захвата)
- Иные области (см. подробные сведения в указанных литературных источниках)

*Из следующих источников: A Favalli et al., LA-UR-13 (2013). A.Favalli et al., LA-UR-14-21661 (2014)

Этот научно-исследовательский проект, выполненный в Лос-Аламосской национальной лаборатрии, финансировался из средств программы руководимых лабораторией научно-исследовательских и опытно-конструкторских работ (LDRD).