

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

МОБИЛЬНЫЙ УСКОРИТЕЛЬ НА БАЗЕ БЕЗЖЕЛЕЗНОГО ИМПУЛЬСНОГО БЕТАТРОНА ДЛЯ РАДИОГРАФИРОВАНИЯ ДИНАМИЧЕСКИХ ОБЪЕКТОВ

XIV Международная Конференция «Забабахинские научные чтения»

В.А. Фомичёв, С.Г. Козлов, Ю.П. Куропаткин, В.И. Нижегородцев, И.Н. Романов, К.В. Савченко, В.Д. Селемир, Е.В. Урлин, А.А. Чинин, О.А. Шамро

18-22 марта, г. Снежинск, Россия

Газодинамические исследования динамических процессов в оптически плотных средах (поведение веществ в экстремальных условиях)

 Экспериментальная рентгенограмма устройства сжатия в опыте с дейтерием при давлении в несколько мегабар

2 – Денситограмма, соответствующая рентгеновскому изображению

Однолучевой 3-кадровый мобильный рентгенографический комплекс

- 1 ускорительный модуль
- 2 модуль импульсного питания электромагнита бетатрона
- 3 взрывозащитная камера (ВЗК)
- 4 система коллимации рентгеновских лучей
- 5 система регистрации теневых изображений

Однолучевой 3-кадровый мобильный циклический ускоритель

Параметры излучателя

размеры, м	4,5×2×1,8
масса, т	5

Параметры системы импульсного питания электромагнита бетатрона

размеры, м	2,6×1,4×2
масса, т	2

- 1 бетатрон типа БИМ
- 2-ускорительный модуль
- 3 модуль импульсного питания электромагнита бетатрона

Временная диаграмма срабатывания подсистем ускорителя

- 1 сигнал с датчика «0-поля»
- 2 соленоид устройства проводки электронного пучка
- 3 магнитная линза
- 4 генератор быстрого сброса

Осциллограммы сигналов с датчиков МЦУ БИМ

- 1 сигнал с пояса Роговского ($I_e = 0$)
- 2 сигнал с пояса Роговского ($I_e \neq 0$)
- 3 сигнал с оптического датчика синхротронного излучения
- 4 уровень интенсивности тормозного излучения
- 5 осциллограмма сигнала с датчика ү-излучения

www.vniief.ru

Рентгенографирование свинцового тест-объекта

Рентгенограмма свинцового тест-объекта

Схема геометрии эксперимента:

- 1 источник излучения
- 2 система коллимации рентгеновских лучей
- 3 свинцовый тест-объект
- 4 кассета *ImagePlate*
- 5 свинцовый защитный экран

Максимальная толщина просвеченного свинцового тест объекта составила ≈140 мм

Определение размеров источника излучения

- Схема геометрии эксперимента:
- 1 источник излучения
- 2 система коллимации
- 3 камера-обскура
- 4 свинцовый фильтр
- 5 кассета ImagePlate
- 6 свинцовый защитный экран

Рентгенограмма источника рентгеновского излучения

Денситограмма изображения источника рентгеновского излучения: 1– по оси х, 2 – по оси у.

Размеры источника излучения составляют ≈ 3×6 мм²

Тестовые включения МЦУ БИМ показали:

1. Толщина просвеченного свинцового тест-объекта составила ≈ 140 мм;

2. Длительность выходного гамма-импульса на полувысоте ≈ 120 нс;

3. Размеры источника излучения $\approx 3 \times 6$ мм².

Ускорительный модуль МРГК

Желаем участникам конференции плодотворной работы!

Мы готовы к взаимовыгодному сотрудничеству!

Спасибо за внимание!