3HY-2019

СТРУКТУРНО-ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ГПУ-МЕТАЛЛАХ ПРИ МЕГАПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ПОД ДАВЛЕНИЕМ В ДИАПАЗОНЕ ТЕМПЕРАТУР 80-450 К

> В.П. Пилюгин, Л.Ю. Егорова, А.М. Пацелов, Т.Р. Суаридзе, Т.П. Толмачёв, П.Е. Панфилов, Ю.В. Хлебникова

> > Институт физики металлов УрО РАН ИЕНиМ Уральский федеральный университет, Екатеринбург Россия

ГПУ металлы

Be, Zn, Cd, Mg, Sn, Ti, Zr, Hf, Fe, Pb, Re, Ru, Os

Под высоким давлением Fe (12.5 ГПа), Pb (16 ГПа)

Системы скольжения:

В базисной плоскости {0001} <1120> -краевые дислокации.

В призматической плоскости {1010} <1120> - винтовые дислокации.

В пирамидальным плоскостям деформация около 1% от общей, как и деформационное двойникование

альфа фаза с/а = 1.585 омега фаза с/а = 0, 615 (зависит от давления)

Титан. Структура псевдомонокристалла на различных уровнях

Титан. Начальная деформация е = 0,5-0,7; давление 8 ГПа. Слева 293 К, справа 78 К

Титан. Большая деформация е = 4.5-5, давление 8 ГПа. Слева 293 К, справа 78 К.

Участок структуры титана после ИПД с поворотом на 3 оборота (e=7.3) при 293 К, содержащий рекристаллизованное зерно α-фазы:

a – светлопольное изображение; b – темнопольное в рефлексе α -фазы g=0001; c

Структура титана после МПД в камере Бриджмена на 10 оборотов (e=10) при 293 К: *а* – светлопольное изображение в рефлексе ω-фазы; *с* – электронно-дифракционная

картина, рефлекс g=111 указан стрелкой.

Структура титана после ИПД кручением на 10 оборотов (e=10) 80 К: *а* – светлопольное изображение; *b* – темнопольное изображение в рефлексе ω-фазы; *с* – электронно-дифракционная картина (стрелкой

указан рефлекс g=111, в котором получено темнопольное изображение).

Ti

Микротвёрдость титана после МПдеформации при 80 К и 293 К. е – истинная деформация

альфа фаза а/с = 1,593 омега фаза а/с = 0,613 (зависит от давления)

Структура α-реек исходного псевдомонокристалла Zr, после выращивания методом Бриджмена и β – α перехода На дифракционной вкладке решётка с осью зоны [100]α

Размеры α-реек в исходном состоянии достигали — 15 – 60 мкм, внутри реек наблюдали субструктуру реечного типа с размерами 0,5 – 0,7 мкм.

Микроструктура α-реек после деформации осадкой, деформация 30% светлопольное изображение

Zr, деформация осадкой 30%, t= 20 C

Zr, n=3 e=8

Zr, n=3 e=8

Zr, после обработки е = 8 (N=5), КВГД 8 ГПа

Zr, зерно в форме полиэдра, предельная деформация под давлением 8 ГПа, N = 10 (e = 8,5)

Теплофизические свойства металлов при МПД. Стационарные и динамические процессы.

Тепловая активность / тепловая инертность:

1/2

 $\chi = (\lambda \rho C)$

А.В. Лыков (ИТеплофизики НАНБ, Минск)

 $T_{\text{пл. Fe}} < T_{\text{пл. Ti}} < T_{\text{ пл. Zr}}$

 χ Fe> χ Zr > χ Ti

Zr, зерно в форме полиэдра, предельная деформация под давлением 8 ГПа, $N = 10 \ (\epsilon = ?)$

Т плав. = 3186°С с/а = 1,614

Образцы рения до и после прокатки

Образцы рения после прокатки на 7-50%, микротвёрдость возросла незначительно, на 15-50% с 7200 МПа до 7800 МПа

S1 h_o=2.0; h₁=1.5

S2 h_o=2.0; h₁=1.7

Образцы Re после сдвига под давлением 14 ГПа: а- исходное состояние, б- φ=15°, в - 45°, г - 90°, д-180°, е - 360°

Относительные интенсивности линий на дифрактограммах деформированного поликристаллического рения

(100) (002) (101) (102) (110) (103)Линия Исходное состояние 20% 30% 100% 10% 15% 10% Интенсивность Сдвиг на 15° Интенсивность 10% 100% 100% 40% 10% 50% Сдвиг на 45° Интенсивность <10% 100% 30% 10% <10% 35% Сдвиг на 90° <10% 100% 30% <10% <10% 25% Интенсивность

Деформационное упрочнение Re при деформации под высоким давлением при комнатной температуре.

Прокатка – относит-льно малое упрочнение.ВД+СДИсходное состояние7200 МПа15°10000 МПа20000 МПа45°20000 МПа30000 МПа90°30000 МПа32000 МПа180°32000 МПа32500 МПа

Далее нет отпечатка.

Твёрдость алмаза 4 категории 90000-110000 МПа. По данным царапанья 1 категории – свыше 220 ГПа

Некоторые результаты

1. Фрагментация титана и циркония при комнатной температуре под высоким давлением происходит по нескольким каналам релаксации напряжений, в том числе через фазовое превращение. При этом при комнатной температуре (низкой гомологической 0,12) МПД инициирует динамическую рекристаллизацию.

Криодеформация блокирует этот процесс. Максимальный рост уровня упрочнения при криодеформации возрастает в 2.9 раза.

2. Рений при деформации под высоким давлением упрочняется до уровня твёрдости материалов с ковалентным типом связи. Рост в 4.5 раза. Наложенное давление блокирует образование микротрещин. Роль отдельных механизмов деформации в рении необходимо уточнить.