

Забабахинские научные чтения 18-22 марта 2019 Снежинск, Россия

ОПИСАНИЕ СДВИГОВОЙ ПРОЧНОСТИ СТАЛИ 30ХГСА НА ОСНОВЕ МОДИФИЦИРОВАННОЙ МОДЕЛИ МТS

<u>Р. М. Кичигин ^{1,2}, Д</u>. М. Шалковский², А. В. Караваев², А. В. Петровцев², Е. А. Козлов², А. М. Брагов³, А. К. Ломунов³

¹ Южно-Уральский государственный университет (Национальный исследовательский университет), Челябинск, Россия

² Российский Федеральный Ядерный Центр — ВНИИ технической физики им. академ. Е. И. Забабахина, Снежинск, Россия

³ НИИ механики Нижегородского государственного университета Н. И. Лобачевского, Нижний Новгород, Россия

Цель:

Определение параметров модели сдвиговой прочности для описания поведения конструкционной стали 30ХГСА в условиях ударно-волнового и взрывного нагружения

Поставленные задачи:

- Анализ результатов исследование поведения образцов стали 30ХГСА при высокоскоростном деформировании
- ➢ Определение параметров модели MTS конструкционной стали 30ХГСА для скоростей деформации до 10⁴ с⁻¹
- Определение параметров для высокоскоростной ветви деформации в условиях ударно-волнового нагружения (УВН)
- Модификация исходной MTS модели для описания изменения сдвиговой прочности стали 30ХГСА претерпевшей полиморфное α-ε превращение при взрывном нагружении

Сталь ЗОХГСА

Состав по ГОСТ 4543-71

Хим. элемент	Содержание, %		
Основные элементы			
С	0.29		
Si	1.11		
Mn	0.99		
Cr	0.97		
Примеси			
Р	0.016		
S	0.005 0.01		
Мо			
Ni	0.07		
V	0.01		
Т	0.01		
Cu	_		

Механические свойства стали по ГОСТ 8479-70, сечение 100-300 мм, закалка (860-880°С) и отпуск (600°С вода или масло)

t _{отп.} ,	σ _{0,2} , МПа	σ _в , МПа	δ ₅ , %	ψ, %	KCU, Дж/см²	Твердость, НВ
600	490	655	13	40	54	212-248

 ³²⁰⁰
 ⁴
 ²
 ²
 Постановка взрывных экспериментов с сохранением образцов [2]
 1 – устройство инициирования; 2 – шашка BB; 3 – сохраняемый образец; 4 – охранное стальное кольцо; 5 – приставные пластины искусственного откола

in.

- 1. Кольский Г. Исследования механических свойств материалов при больших скоростях нагружения. Механика, вып. 4. М.: ИЛ,1950, 108-119 с.
- 2. A.M. Bragov, G.T. Gray III, EA. Kozlov, A.K. Lomunov, A.V. Petrovtsev, et al., J. Phys. France IV, 2003, vol. 110, pp. 761-766.

Анализ экспериментальных данных

Определение модуля сдвига

B_T = 0,081, C_μ = 0,9323, μ₀ = 86,028 ГПА - модуль сдвига при 0К.

6

- 1. A constitutive model for metals applicable at highstrain rate./ D. J. Steinberg, S. G. Cochran, and M. W. Guinan. J. Appl. Phys. 51, 1980.
- 2. Banerjee B. The Mechanical Threshold Stress model for various tempers of AISI 4340 steel. International Journal of Solids and Structures 44 834-859(2007).

Модель сдвиговой прочности MTS

$$Y = \mathbf{Y}_{a} + \frac{\mu(P,\rho,T)}{\mu_{0}} max\{[\mathbf{Y}_{i}(\dot{\boldsymbol{\varepsilon}},\boldsymbol{T}) + \mathbf{Y}_{\varepsilon}(\dot{\boldsymbol{\varepsilon}},\boldsymbol{T})], \mathbf{Y}_{R}(\dot{\boldsymbol{\varepsilon}},\boldsymbol{T})\}, \quad (2)$$

 Y_a — независящая от температуры компонента; Y_i — передает зависимость сдвиговых напряжений в соответствии с термофлуктуационным режимом движения дислокаций; Y_{ε} — учитывает изменение плотности дислокаций и связанное с этим деформационное упрочнение; Y_R — учитывает изменение сдвиговых напряжений на высокоскоростной ветви деформации (будет рассмотрено далее).

$$Y_i = W_i(\dot{\varepsilon}, T)\hat{Y}_i; \quad Y_\varepsilon = W_\varepsilon(\dot{\varepsilon}, T)\hat{Y}_\varepsilon(\varepsilon, \dot{\varepsilon}, T),$$
(3)

$$W_{i}(\dot{\varepsilon},T) = \left\{ 1 - \left(\frac{T \ln \frac{\varepsilon_{0i}}{\dot{\varepsilon}}}{\mu G_{0i}}\right)^{\frac{1}{q_{i}}} \right\}^{\frac{1}{p_{i}}}, \quad W_{\varepsilon}(\dot{\varepsilon},T) = \left\{ 1 - \left(\frac{T \ln \frac{\varepsilon_{0\varepsilon}}{\dot{\varepsilon}}}{\mu G_{0\varepsilon}}\right)^{\frac{1}{q_{\varepsilon}}} \right\}^{\frac{1}{p_{\varepsilon}}}.$$
(4)

С помощью введения G_{0i} и $G_{0\varepsilon}$ объединяют ряд констант для упрощения записи:

$$G_{0i} = \frac{g_{0i}b^3}{k}; G_{0\varepsilon} = \frac{g_{0\varepsilon}b^3}{k}.$$
(5)

- 1. P. S. Follansbee and U. F. Kocks A constitutive description of the deformation of copper on the use of the mechanical threshold stress as an internal state variable. / Acta metal. Vol. 36, No. 1, pp. 81-93, 1988.
- U. F. Kocks- Realistic constitutive relations for metal plasticity/ Materials Science and Engineering A 317 (2001), pp. 181-187

Модель сдвиговой прочности, деформационное упрочнение

$$\frac{d\widehat{Y}_{\varepsilon}}{d\varepsilon} = \theta_0 \left[1 - C_{1\varepsilon} \frac{\tanh\left(\alpha_1 \frac{\widehat{Y}_{\varepsilon}}{\widehat{Y}_{\varepsilon s}(\dot{\varepsilon},T)}\right)}{\tanh(\alpha_1)} - C_{2\varepsilon} \frac{\widehat{Y}_{\varepsilon}}{\widehat{Y}_{\varepsilon s}(\dot{\varepsilon},T)} \right]^{\alpha_2}, \quad (6)$$

$$heta_0$$
 — начальное значение модуля
упрочнения; $\Theta_0 = \Theta_{00} + C_{1\Theta} \ln(\dot{\epsilon}) + C_{2\Theta} \dot{\epsilon} - C_{3\Theta} \left(\frac{T}{T_0} - 1 \right)$, (7)

$$\begin{split} \widehat{Y}_{\varepsilon S} &= \widehat{Y}_{0\varepsilon S} \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{0\varepsilon S}}\right)^{\frac{T}{\mu G_{0\varepsilon S}}}, \quad (8) & \overset{0.6}{\underbrace{\int}} & \overset{0.6}{\underbrace{Y}_{\varepsilon S}(\dot{\varepsilon},T)} \\ \widehat{Y}_{\varepsilon S}(\dot{\varepsilon},T) &- \text{предельное напряжение} \\ \text{насыщения.} \\ \widehat{Y}_{0\varepsilon S} &- \text{напряжение насыщения при 0 K.} \\ \dot{\varepsilon}_{0\varepsilon S}, G_{0\varepsilon S} &- \text{константы} & G_{0\varepsilon S} &= \frac{g_{0\varepsilon S}b^3}{k}. \end{split}$$

Определение независимой компоненты Y_a

 Y_a — MTS (Mechanical Threshold Stress — Пороговое Механическое Напряжение)

$$Y_a = \left(Y_{0a} + \kappa \left(\frac{\sqrt{d_0} - \sqrt{d}}{\sqrt{d_0 d}}\right)\right)$$

где d_0 – принятый за «эталонный» размер зерна;

Y_{0a} – типичное для данного
 металла с выбранным «эталонным»
 зерном значение;

к – константа.

Хим. элемент	ЗОХГСА	AISI-4340	HY-100	
С	0.29	0.3-0.38	0.1-0.18	
Cr	0.97	1.3-1.7	1.0-1.9	
Mn	0.99	0.5-0.8	0.1-0.4	
Si	1.11	≤0.4	0.08-0.38	
Р	0.016	≤0.035	<0.015	
S	0.005	≤0.035	<0.04	
Мо	≤0.01	0.15-0.3	0.2–0.65	
Ni	≤0.07	1.3–1.7	2.25-3.5	
V	<0.01	-	<0.03	
Т	<0.01	-	<0.02	
Cu	-	-	<0.25	

Примем значение $Y_a = 50$ МПА основываясь на величине, используемой для материалов со схожим составом: стали AISI 4340 (в работе [1]) и стали HY-100 (в работе [2])

- 1. Banerjee B. The Mechanical Threshold Stress model for various tempers of AISI 4340 steel. International Journal of Solids and Structures 44 834-859(2007).
- 2. Goto D.M. Mechanical Threshold Stress constitutive strength model description of HY-100 steel. / Indian Head Division Naval Surface Warfare Center, Indian Head, MD 20640-5035, 1999.

Определение \widehat{Y}_i , g_{0i}

1. Banerjee B. The Mechanical Threshold Stress model for various tempers of AISI 4340 steel. International Journal of Solids and Structures 44 834-859(2007).

10

Определение $Y_{0\varepsilon s}$, $g_{0\varepsilon s}$

1. Banerjee B. The Mechanical Threshold Stress model for various tempers of AISI 4340 steel. International Journal of Solids and Structures 44 834-859(2007).

11

Деформационное упрочнение

Сравнение результатов с экспериментом

Описание зависимости сдвиговых напряжений от скорости деформации на высокоскоростной ветви определяется

Расчет с использованием проводится в пределах области скоростей деформации, при которых $Y_{Ri} \leq Y_{Rs}$. При более высоких скоростях принимается $Y_{Ri} = Y_{Rs}$.

$ heta_R$, ГПа	Ŷ _{0R1} , ГПа	\widehat{Y}_{0R2} ,ГПа	Ė₀ _R , c ^{−1}	C _{R1}	C _{R2}	C _{R3}	C _{R4}
90	1	14	10 ¹²	0	4	1	0.136

1. Tonks D.L. The datashop: A database of weak-shock constitutive data., Los Alamos National Laboratory Report, LA-12068-MS, 1991.

14

2. A.M. Bragov, G.T. Gray III, EA. Kozlov, A.K. Lomunov, A.V. Petrovtsev, et al., J. Phys. France IV, 2003, vol. 110, pp. 761-766.

Полиморфное α-ε превращение

Модификация модели для учета α-ε превращения

$$\begin{split} \widehat{Y}_{\varepsilon s} &= \left(\widehat{Y}_{0\varepsilon s} + \widehat{Y}_{\xi s}\right) \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{0\varepsilon s}}\right)^{\frac{T}{\mu G_{0\varepsilon s}}}, \quad (9) \\ \widehat{Y}_{\xi s} &= \left(C_{1\xi} \ln \dot{\varepsilon} + C_{2\xi} \frac{T}{T_{0}}\right) \cdot \mathbf{F}(\xi) \quad (10) \\ \mathbf{f}_{\xi s} &= \left(C_{1\xi} \ln \dot{\varepsilon} + C_{2\xi} \frac{T}{T_{0}}\right) \cdot \mathbf{F}(\xi) \quad (10) \\ \mathbf{f}_{\xi s} &= \left(C_{1\xi} \ln \dot{\varepsilon} + C_{2\xi} \frac{T}{T_{0}}\right) \cdot \mathbf{F}(\xi) \quad (10) \\ \mathbf{f}_{\xi s} &= \left(C_{1\xi} \ln \dot{\varepsilon} + C_{2\xi} \frac{T}{T_{0}}\right) \cdot \mathbf{F}(\xi) \\ \mathbf{f}_{\xi}(\xi) &= \operatorname{how}(\xi) = \operatorname{how$$

превращения.

$$\widehat{Y_{\varepsilon}}^{\xi} = \left(C_{3\xi} \ln \dot{\varepsilon} + C_{4\xi} \frac{T}{T_0}\right) \cdot \mathbf{F}(\xi),$$
 где $C_{3\xi}$, $C_{4\xi}$ — константы

0.4

16

Важно отметить, что при $\widehat{Y_{\varepsilon}} > \widehat{Y_{\varepsilon s}}$, принимаем $\widehat{Y_{\varepsilon}} = \widehat{\widehat{Y_{\varepsilon s}}}$.

Заключение

В ходе выполнения работы:

- Проанализированы и систематизированы экспериментальные данные по исследованию поведения стали 30ХГСА при высокоскоростном деформировании
- 2. Подобраны параметры для задания зависимости модуля сдвига от температуры
- 3. Откалибрована модель для низкоскоростной ветви деформации (до $10^4~{
 m c}^{-1}$)
- Подобраны параметры для описания высокоскоростной ветви (до 10¹² с⁻¹) и плавного перехода от низкоскоростной к высокоскоростной ветви
- 5. Произведена модификация исходной модели с целью учета изменения сдвиговых напряжений в результате протекания обратимого полиморфного α-ε превращения

Результат

Получена широкодиапазонная модель для стали 30ХГСА, которая позволяет описывать и прогнозировать поведение материала при различных температурах (от криогенных – до температуры плавления), скоростях деформации (от $10^{-3}c^{-1}$ до $10^{12}c^{-1}$), а также учитывать фазовое α-є превращение.

Спасибо за внимание

