

XIV International Conference «ZABABAKHIN SCIENTIFIC TALKS» March 18-22, 2019, Snezhinsk, Russia

Damage of thin metal films by high-power terahertz pulses

O.V. Chefonov¹, A.V. Ovchinnikov¹, S.I. Ashitkov¹, S.A. Evlashin², P.S. Kondratenko³, M.B. Agranat¹, V.E. Fortov¹

¹JIHT RAS, Moscow, Russia ²Skoltech, CDMM, Moscow, Russia ³NST RAS, Moscow, Russia

Outline

- 1. Terahertz source
- 2. Experimental scheme
- 3. Results

Terahertz source

- 1. Femtosecond Cr:forsterite laser
- 2. Organic nonlinear crystal

Femtosecond Cr:forsterite laser

Output characteristics

- Wavelength 1240 nm
- Pulse duration 100 fs
- Pulse energy 20 mJ
- Pulse energy stability 5%
- Intensity contrast 10⁷
- Repetition rate 10 Hz
- $M^2 1.3$

Agranat M. B., Ashitkov S. I., Ivanov A. A., Konyashchenko A. V., Ovchinnikov A. V., Fortov V. E. Terawatt femtosecond Cr:forsterite laser system // Quantum Electron. 2004. V. 34, No. 6. P. 506–508.

Organic nonlinear crystal

Terahertz Generator: Electro-Optic DSTMS Crystal

DSTMS: 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate

Features

- High quality crystal
- Large nonlinear optical susceptibilities
- Phase matching for THz generation between 720 nm and 1650 nm
- Efficient terahertz generation in 0.3-3 THz range @ 1240 nm

Thickness: 440 µm

Effective diameter: 8 mm

Conversion efficiency: >1%

Experimental scheme

Experimental scheme

The value of electric-field strength was estimated using the energy of a THz pulse, its duration and a focused to a diffraction-limited spot size, assuming a Gaussian pulse shape:

$$E_{THz} \left[\frac{V}{cm} \right] = 27.45 \sqrt{I_{THz} \left[\frac{W}{cm^2} \right]}$$
 (1)

$$I_{THZ} = \frac{4\sqrt{\ln 2}}{\pi\sqrt{\pi}} \frac{W_{THZ}}{\omega^2 \tau_{FWHM}} \tag{2}$$

$$\omega = 2\lambda F/(\pi D) \tag{3}$$

 W_{THz} — the THz pulse energy, τ_{FWHM} — the THz pulse duration, ω —the Gaussian beam radius at $1/e^2$ level, λ —the central wavelength of THz spectrum, F—the focal length of the OAP, D—the beam diameter on the OAP.

 $W_{THz} \sim 110 \ \mu \text{J}$ (measured by a calibrated Golay cell) $\tau_{FWHM} \sim 700 \ \text{fs}$ (measured by a first-order autocorrelator)

 $ω_0 \sim$ **128** μm (estimated for λ =190 μm (1.58 THz), F=50.8 mm, D=48 mm)

$$E_{THz} \sim 20 \text{ MV/cm}$$

Samples

- 20-nm Al film
- 20-nm Ni film

The samples were a thin metal films deposited on a polished glass substrate of 180 μ m in thickness (a coverslip) using magnetron sputtering of a high-clean metal target. The thickness of the magnetron-sputtered films were 20 nm. The study of surface morphology using AFM and SEM revealed surface roughness (R_a) of 4.5 nm.

Single shot damage of aluminum film

SEM images of through holes and its edges in **Al film** produced by single THz pulses. (a-c): $F = 0.14 \text{ J/cm}^2$; (d-f): $F = 0.3 \text{ J/cm}^2$.

Single shot damage of nickel film

SEM images of **Ni film** damages induced by single terahertz pulse at different fluences. (a): $F = 0.43 \text{ J/cm}^2$; (b): $F = 0.39 \text{ J/cm}^2$.

The single-pulse damage threshold

Determination of the damage threshold in Al and Ni films irradiated with a single THz pulse; experimental data are shown with square symbols approximated with linear functions (solid lines)

The single-pulse damage threshold of the thin film was experimentally determined using a standard technique, where the squared radius (r_D [μ m]) of observed damaged regions is plotted versus the logarithm of the energy of incident THz pulses W_{THz} [μ J]. This dependence should be linear for a Gaussian beam. Thus, the threshold energy W_{th} could be derived from the line's intersection with an X-axis, while the line's slope determines the parameter of the Gaussian beam r_0 at the level of 1/e.

The measured radius r_0 was of 90 μ m, which gives a single-pulse damage threshold of the incident fluence of $F_{\rm th}$ = $W_{\rm th}/(\pi r_0^2) \approx 0.15$ J/cm² for Al and 0.19 J/cm² for Ni film at $E_{\rm THz}$ ~ 15 MV/cm.

J.M. Liu, Opt. Lett. 7(5), 196 (1982)

Multiple shot damage of Al and Ni films

SEM image of Al film damages induced by multiple THz pulses at fluence F = 0.24 J/cm², N = 60.

SEM image of Ni film damage induced by multiple THz pulses at fluence F = 0.43 J/cm², N = 40.

Multiple shot damage of Al and Ni films

\longrightarrow E_{TH}

Features

- Damage pattern of Al and Ni films is represented by elongated channels of metal surface discontinuity, aligned perpendicular to the electric filed vector of THz radiation.
- 2. Damage pattern of Al and Ni films is similar to fractal structure.
- 3. The channels have cone-shaped (carrot-like) appearance for the Al film.
- 4. The channels have branched structure (umbrella-type tree) for the Ni film.
- 5. The channels differ in character and sizes for the Ni and the Al films.

Conclusion

- 1. Complete destruction of the thin metal films irradiated with a single terahertz pulse has been observed.
- 2. The single-pulse damage threshold of the thin metal films was measured and determined experimentally.
- 3. The damage pattern induced by multiple THz pulses has the complex periodic structure in the form of channels on metal film surface that are perpendicular to the in-plane electric field direction of THz radiation.

More details you can find in our publications:

- 1. Agranat M. B., Chefonov O. V., Ovchinnikov A. V. et al. Damage in a Thin Metal Film by High-Power Terahertz Radiation // Phys. Rev. Lett. 2018. V. 120, P. 085704.
- 2. Chefonov O. V., Ovchinnikov A. V., Evlashin S. A., Agranat M. B. Damage Threshold of Ni Thin Film by Terahertz Pulses // J Infrared Milli Terahz Waves (2018) 39: 1047.