Международная конференция «Забабахинские научные чтения — 2019»

Применение псевдоатомной молекулярной динамики к исследованию транспортных свойств сильнонеидеальной плотной плазмы

А. Л. ФАЛЬКОВ*, А. А. ОВЕЧКИН и П. А. ЛОБОДА

ФГУП РФЯЦ-ВНИИТФ им. акад. Е. И. ЗАБАБАХИНА (456770, Россия, г. Снежинск Челябинской области, а/я 245); НИЯУ МИФИ (115409, Россия, г. Москва, Каширское ш., д. 31)

Снежинск — 2019

Содержание

Модели TFIS/TFSC и ПАМД Эффективный потенциал межионного взаимодействия V_{II} (r_{ij}) Псевдоатомная классическая молекулярная динамика Ионная самодиффузия Ионная сдвиговая вязкость Результаты Выводы

Модели TFIS/TFSC (C. E. Starrett & D. Saumon)

Электронные подзадачи: полная $(Z \neq 0, I)$ и «внешняя» $(Z \equiv 0, II)$: I. $\begin{cases} n_{e}(r) = C_{TF}I_{1/2} \left(\beta \left(\mu_{e} - V_{Ne}^{eff}(r) \right) \right), & \beta = 1/T, \quad C_{TF} = \text{const}, \\ V_{Ne}^{eff}(r) = \boxed{-\frac{Z}{r}} + \int_{V_{eff}} d\mathbf{r}' \frac{n_{e}(r') - n_{e}^{0}g(r')}{|\mathbf{r} - \mathbf{r}'|} + V_{Ie}^{e,c} \left[n_{I}(r) \right] + \dots \end{cases}$
$$\begin{split} \text{II.} \quad \begin{cases} n_e^{ext}\left(r\right) = C_{TF}I_{1/2}\left(\beta\left(\mu_e - V_e^{eff,ext}(r)\right)\right), \\ V_e^{eff,ext}(r) = \int_{\mathbf{r}_{-}} d\mathbf{r}' \frac{n_e^{ext}\left(r'\right) - n_e^0g(r')}{|\mathbf{r} - \mathbf{r}'|} + V_{Ie}^{e,c}\left[n_I\left(r\right)\right] + \dots \end{cases} \end{split}$$
 $V_{Ie}^{e,c}\left[n_{I}(r)\right] = -\left(\frac{Z^{\star}}{\overline{Z}}\right)\frac{n_{I}^{0}}{\beta}\int d\mathbf{r}'\widetilde{c_{Ie}}\left(|\mathbf{r}-\mathbf{r}'|,\overline{n_{e}^{0}}\right)(g(r')-1).$

 $n_I^{(0)}(r) \equiv n_I^0 \Theta \left(r - r_0^I\right),$ <u>TFIS:</u> $n_I \left(r\right) = n_I^{\text{(first it.)}}(r),$ <u>TFCS:</u> $n_I \left(r\right) \equiv n_I^0 g(r)$ Ионная подзадача — ур-ия Орнштейна-Цернике или ПАМД:

III. ОЦ:
$$\begin{cases} h(k) = c(k) + n_I^0 c(k) h(k), \ E(r) - \text{замыкание уравнений ОЦ,} \\ g(r) \equiv 1 + h(r) = \exp\left(\left[\frac{-\beta V_{II}(r)}{\rho} + h(r) - c(r) + E(r)\right); \end{cases}$$

C. E. Starrett, D. Saumon. Phys. Rev. E 87, 013104 (2013), Phys. Rev. E 93, 063206 (2016).

Экранирующая электронная плотность $n_e^{SCR}(r)$: зависимость от температуры и плотности для плазмы вольфрама

Эффективный ион-ионный потенциал V_{II}(k) для решения ионной подзадачи в TFIS/TFSC или ПАМД $\begin{cases} \chi_{ee}^{0}(k), \\ c_{ee}(k), \\ n_{e}^{SCR}(k) \end{cases} \Rightarrow \begin{cases} O \text{писание ионных корреляций} \leftarrow \beta V_{II}(r); \\ \beta V_{II}(k) = \frac{4\pi\beta}{k^{2}}\overline{Z}^{2} - c_{Ie}\left(k, \overline{n_{e}^{0}}\right) n_{e}^{SCR}(k); \\ c_{Ie}\left(k, \overline{n_{e}^{0}}\right) = -\beta n_{e}^{SCR}(k)/\chi_{e}(k); \\ \chi_{e}(k) \equiv \chi_{ee}^{0}(k)/\left(1 + \chi_{ee}^{0}(k)c_{ee}(k)/\beta\right). \end{cases}$ $\left| \chi_{ee}^{0}(k), c_{ee}(k) \rightarrow \chi_{e}(k), n_{e}^{SCR}(k) \rightarrow c_{Ie}(k) \rightarrow V_{II}(k) \right|$
$$\begin{split} c_{ee}(k) &= -4\pi\beta \left(1 - G_{ee}(k)\right)/k^2 &\leftarrow (\text{«Атом в желе»} + \Pi\Pi \mathbf{K});\\ \boxed{n_e^{SCR}(r) \equiv n_e^{\mathrm{PA}} - n_e^{\mathrm{ion}}, \ n_e^{\mathrm{PA}}(r) \equiv n_e - n_e^{\mathrm{ext}}} \quad \overline{Z} = \int_{U} d\mathbf{r} n_e^{SCR} \end{split}$$
 $N_{tot} \rightarrow \infty$ $n_e(\mathbf{r}) \equiv \sum_{i=1}^{N} n_e^{PA}(|\mathbf{R}_j - \mathbf{r}|) -$ суперпозиционное приближение.

↑ $\chi_{ee}^{0}(k)$ — функция Линдхарда. ↑ $n_{e}^{ion}(r)$ — D. Ofer, E. Nardi, and Y. Rosenfeld. Phys. Rev. A 38, 5801 (1988). ↑ $G_{ee}(k)$, ЛПК — S. Ichimary and K. Utsumi. Phys. Rev. B 24, 7385 (4981). = , (= =)

Эффективный ион-ионный потенциал $rV_{II}(r_{ij})$ и поле сил парного взаимодействия $F(r_{ij})$ между псевдоатомами

Расчёты по модели TFIS для плазмы W, T = 10 эВ, $\rho \in [0,5;5;50]$ г/см³.

ъ

・ロト ・ 雪 ト ・ ヨ ト

Зависимость ионных РФР g(r) от потенциала $V_{II}(r)$

Расчёты по модели TFSC для плазмы W, T = 10 эB, $\rho \in [0,5;5;50]$ г/см³.

Псевдоатомная молекулярная динамика

- ПАМД классическая МД + потенциальная энергия V_{II} из TFIS/TFSC
 - Для моделирования необходимо знать $V_{II}(r), T, \rho, A, Z;$

$$\forall i \leq N_{tot} \Rightarrow m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\frac{1}{2} \sum_{i,j} \mathbf{F} \left(|\mathbf{r}_i - \mathbf{r}_j| \right) - \gamma \frac{d\mathbf{r}}{dt} + \mathbf{L}_i(t),$$

- интегрирование уравнений движения: схема с «дробными шагами» (1-ого порядка точности);
- N_{tot} : ~ 10³ расчёт структур и коэффициента самодиффузии, ~ 10⁴ — расчёт термодинамики и вязкости;
- ячейка с периодическими граничными условиями;
- ▶ параллельный программный код ELEGIA-PALMA;
- ▶ $m_i \equiv 1$, $\gamma = \text{const}$ эффективная сила трения;
- ► \mathbf{L}_i случайные силы Ланжевена («тепловой шум»), $\langle \mathbf{L}(\mathbf{t})_i \rangle = 0; \quad \langle \mathbf{L}_i(t) \mathbf{L}_i(t+\tau) \rangle \sim \delta(\tau).$

Примеры траекторий псевдоатомов Система в начале расчёта. Плавление ОЦК-решётки

Примеры траекторий псевдоатомов Система в расплавленном состоянии. Изотропная жидкая фаза

Ионный коэффициент самодиффузии $D^{R,V}$

$$\frac{\partial \rho}{\partial t} = D\nabla^2 \rho, \qquad \rho \mathbf{U} = -D\nabla \rho,$$

Формула Эйнштейна-Смолуховского:

$$D^{R} = \lim_{t \to \infty} \frac{1}{6N_{m}t} \left\langle \sum_{j}^{N_{m}} \left[\mathbf{r}_{j}(t) - \mathbf{r}_{j}(0) \right]^{2} \right\rangle$$

Формула Кубо-Грина¹⁾:

$$D^{V} = \frac{1}{3N_{m}} \int_{0}^{+\infty} dt \left\langle \sum_{j=1}^{N_{m}} \left(\mathbf{v}_{j}(t), \mathbf{v}_{j}(0) \right) \right\rangle$$

D. C. Rapaport. The Art of Molecular Dynamic Simulation. — Cambridge Univ. Press, 2-nd ed., 2004.

 $^{1)}$ Интегрирование автокорреляционной функции скорости. \bullet
 \bullet

Ионная сдвиговая вязкость
$$\eta$$

 $\rho\left(\frac{\partial}{\partial t} + \mathbf{U}\nabla\right)\mathbf{U} - \eta\nabla^{2}\mathbf{U} - \left(\frac{\eta}{3} + \eta_{v}\right)\nabla\left(\nabla\mathbf{U}\right) = -\nabla p,$
 $\eta = \lim_{t \to \infty} \frac{1}{6TVt} \left\langle \sum_{x < y} \left[\sum_{j} m_{j}r_{jx}(t)v_{jy}(t) - \sum_{j} m_{j}r_{jx}(0)v_{jy}(0)\right] \right\rangle,$

Расчёт *η* основан на интегрировании автокорреляционной функции тензора давления (формула Кубо-Грина):

$$\left| \eta = \frac{V}{3T} \int_{0}^{+\infty} dt \left\langle \sum_{x < y} P_{xy}(t) P_{xy}(0) \right\rangle \right|,$$

$$P_{xy} \equiv \frac{1}{V} \sum_{j} \left[m_{j} v_{j_{x}} v_{j_{y}} + \sum_{i \neq j} r_{ij_{x}} F_{ij_{y}} + (\mathbf{r}_{j} \mathbf{F}_{j}) \right], \quad F_{ij_{\alpha}} = (\mathbf{F} (r_{ij}))_{\alpha}$$

D. C. Rapaport. The Art of Molecular Dynamic Simulation. — Cambridge Univ. Press, 2-nd ed., 2004.

C. A. Croxton. Liquid State Physics — A Statistical Mechanical Introduction. — Cambridge Univ. Press, 1974.

Схема организации счёта в программном комплексе ELEGIA-PALMA

ъ

・日本 ・ 西本 ・ 日本 ・ 日本

Коэффициент сдвиговой вязкости η для расплавов чистых металлов при $T = T_{\pi\pi} + 50 \text{ K}$ 7 Experimental data (1977) 6 Fe Au Ni 5 Co Cu Δ ЧS Ag ÷ 3 Zn Cd 2 Sn Ga Hg Bi Mg, Al In Sb Ph 1 Ca Ŕb TŦ Мa 0 20 40 50 10 30 60 70 80 90 0 Z_{nucl}

Эксперимент: П. П. Арсентьев, Л. А. Коледов. Металлические расплавы и их свойства. — М.: «Металлургия», 1976. — 376 с.

) Q (

Коэффициент сдвиговой вязкости η для расплавов чистых металлов при $T = T_{n.n.} + 50$ К

Элемент	$\eta^{(\mathfrak{skc} \pi.)}, \mathrm{c} \Pi$	$\eta^{(\Pi AM \mathcal{A})}, c \Pi$	$\delta, \%$	$T, ^{\circ}C$	$\overline{ ho},$ г/см 3
Li ₃	$0,\!55$	$0,\!49{\pm}0,\!15$	-11	504	$0,\!512$
Fe ₂₆	$5,\!40$	$4,74{\pm}0,12$	-12	1585	$6,\!999$
Co ₂₇	$4,\!80$	$5,\!58{\pm}0,\!58$	+16	1545	7,764
Ni ₂₈	5,00	$5,79{\pm}0,71$	+16	1503	7,830
Cu ₂₉	4,10	$4,69{\pm}0,40$	+14	1134	7,870
Zn ₃₀	$2,\!82$	$2,24{\pm}0,44$	-21	470	$6,\!430$
Ag ₄₇	$3,\!62$	$3,86{\pm}0,29$	+7	1012	9,242
Pb ₈₂	$1,\!09$	$1,25{\pm}0,19$	+15	378	$10,\!605$

Эксперимент и формулы для определения плотности металлического расплава: П. П. Арсентьев, Л. А. Коледов. Металлические расплавы и их свойства. — М.: «Металлургия», 1976. — 376 с.

Расчёт: методика ПАМД, программный комплекс ELEGIA-PALMA; $1,3 \cdot 10^4$ точек на ячейку — сетка в электронной подзадаче; $R_{\rm end} = 50 \ r_0^I$; фурье-преобразование по методу Филона, 4096 точек — сетка в ионной подзадаче; $N_{\rm tot} = 10^3$ — полное число ПА; $R_{\rm cut} = 14 \ {\rm a}_B$ — «радиус обрезания» взаимодействий между ПА; $N_m = 1,5 \cdot 10^5$ — количество шагов по времени, $\Delta t = 5 \cdot 10^{-3}$ і.u. — шаг по времени в ионных единицах; 40 слоёв по временц; $\alpha = 0, 95$ — доверительная вероятность (статистическая обработка данных по методу Стьюдента).

 $\Gamma_{II} = 230 \div 460$, ELEGIA-PALMA: $N_m = 125$.

 $\overset{V}{D^V},~D^R,~D_{AAMD}$ — J. Dai, Y. Hou, D. Kang et al. arXiv:1303.3361v1 [astro-ph.EP], pp. 1–15 (2013).

Выводы

- 1. Показано хорошее согласие расчётного коэффициента сдвиговой вязкости $\eta^{\Pi AM Д}$ с экспериментальными результатами для металлических расплавов при нормальном давлении и $T = T_{\Pi Л} + 50^{\circ}$ С.
- Отмечен быстрый (на порядок) рост коэффициентов самодиффузии D^{R,V} при незначительном увеличении температуры плазмы. Для жидкой фазы получено согласие с результатами расчётов по молекулярнодинамическим методикам AAMD (с квазиклассическим описанием электронной подсистемы плазмы) и QLMD (квантовая молекулярная динамика).
- 3. В программе ELEGIA-PALMA реализован способ снижения дисперсии расчётных результатов для коэффициентов $D^{R,V}$ и $\eta^{\Pi AMA}$. Для коэффициента $\eta^{\Pi AMA}$ отмечена существенно более медленная сходимость с ростом N_m , чем для $D^{R,V}$.

«Ионная» система единиц измерения (LMT) Единица длины *L*:

$$L [\mathrm{cm}] \equiv a_B [\mathrm{cm}].$$

Единица массы М:

$$M \ [\mathbf{r}] \equiv A [\mathrm{a.e.m.}] \cdot 1 \ \mathrm{a.e.m.} / \mathbf{r}.$$

Единица температуры Т:

$$T [\mathfrak{spr}] = \mathrm{Ha} \cdot 1\mathfrak{s}\mathrm{B}/\mathrm{Ha} \cdot 1\mathfrak{spr}/\mathfrak{s}\mathrm{B}.$$

Коэффициент ионной самодиффузии D:

$$D_{\text{i.u.}} = a_B[\text{cM}] \left(\frac{3}{2\beta} \frac{\text{Ha} [\text{spr}]}{M [\text{r}]}\right)^{1/2}, \quad [D_{\text{i.u.}}] = \frac{\text{cM}^2}{\text{c}}$$

Коэффициент ионной сдвиговой вязкости η :

$$\eta_{\text{i.u.}} = \frac{10^2}{\left(a_B[\text{cM}]\right)^2} \left(\frac{3}{2\beta} \cdot \text{Ha}[\text{spr}] \cdot M[\text{r}]\right)^{1/2}, \quad [\eta_{\text{i.u.}}] = \text{M}\Pi\text{a.c} \equiv c\Pi.$$