

Комплексное теоретико-экспериментальное исследование течений горючих газовых смесей

В.А. Левин

НИИ механики МГУ, Москва

XIV Международная конференция «Забабахинские научные чтения», 18–22 марта 2019 г., Снежинск

Общий вид установки НИИ механики МГУ

Модель выходного устройства с кольцевым соплом перед её установкой в ресивер

Газодинамический блок экспериментальной установки

Моделирование течений в импульсной экспериментальной установке НИИ механики МГУ

Рассчитанное поле температуры внутри установки

Моделирование течений в импульсной экспериментальной установке НИИ механики МГУ

Рассчитанная картина линий тока внутри установки

Сравнение результатов расчетов и экспериментов

Расчетные (пустые точки) и экспериментальные (закрашенные точки) значения максимумов тяги F_{max} и давления p_m в точке на поверхности внутреннего тракта при P_{*}=14.73 атм: N 1600 H 1400 p_m , atm

Сравнение результатов расчетов и экспериментов

Расчетные (пустые точки) и экспериментальные (закрашенные точки) значения максимумов давления р_А в центре тяговой стенки и

Схема камеры сгорания

Схема организации вращающейся детонации в кольцевом сопле при плоской тяговой стенке

Поле темперы при стационарной вращающейся детонации

T, K: 200 500 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 3800 4100

Детонация во вращающемся эллиптическом цилиндре

В общем случае $\,\omega(t)$ – функция времени.

В цилиндре – стехиометрическая пропановоздушная смесь.

Далее представлены результаты при $\omega(t)=const$

В каждой точке границы – действие поршня со скоростью $\, artheta_n \,$

Для произвольного контура, задаваемого зависимостью r(s) или r(arphi), где S – длина дуги, а arphi – полярный угол, в точке $\max v_n$ имеем 2 эквивалентных условия:

$$\frac{d^2r^2}{ds^2} = 0 \left[r^3 \frac{d^2r}{d\varphi^2} + \left(\frac{dr}{d\varphi}\right)^4 = 0 \right]$$

Для эллипса $\max_{\substack{\text{условие на}}} v_n$ дает: tg

$$\max v_n = \omega(a - b)$$
$$\operatorname{tg} \Psi = (b/a)^{3/2}$$

Детонация вне вращающегося эллиптического цилиндра

При инициировании горючей смеси, находящейся вне цилиндра, **критическая угловая скорость** *r*=25 см

совпадает с найденной ω_* Добавление внешнего кругового цилиндра позволяет добиться инициирования у его стенки при меньшей угловой скорости.

Используя гипотезу плоских сечений, полученные результаты можно применить для моделирования течения горючей смеси в канале специальной винтовой формы, получаемой одновременным вращением и перемещением эллипса

Скорость потока и угловая скорость определяют шаг винтового канала

$$H = 2\pi U/\omega$$

Детонация в трехмерном винтовом канале

Поле температуры

Инициирование детонации во вращающемся круговом цилиндре радиуса r = 20 см с «лепестками» параболической формы, распределенными равномерно вдоль его границы

Сложная волновая картина течения

Фрагмент геометрии трехмерного канала с лопатками

Стационарная детонация в трехмерном канале с лопатками

Результаты расчетов. Течение воздуха

Детонация на 1-м периоде в углах

Поле температуры при A=22 мм, T=60 мкс, t=20 мкс

Детонация на 1-м периоде в углах

Детонация в каналах квадратного переменного сечения

Канал квадратного сечения со стороной *h*=*H*-*A*[1-cos(π*z/L*)]. H=6 см, A=1.2 см, L=9 см. При z=0 U=6000 м/с.

Срезы поля температуры

Сверхзвуковое течение в плоском канале с уступом

Канал соединен с резервуаром для выходящего из него газа

В канале – неподвижный воздух с давлением $p_0 = 1$ атм и температурой $T_0 = 20$ °C. На входе в канал – сверхзвуковой поток с заданной скоростью U и такими же давлением и температурой, на стенках – условие непротекания. Поток – либо воздушный, либо пропановоздушный по всему сечению, либо комбинированный: в части сечения вблизи нижней стенки – пропановоздушный, а в другой – воздушный.

Сверхзвуковой поток воздуха

Из-за эффекта «запирания» стационарное течение воздуха возможно при $U>U_0$, где U_0 = 935 м/с – критическая скорость.

Возможно нормальное и маховское отражение волны от верхней стенки

Поле температуры: U = 1400 м/c

После стабилизации течения по всему входному сечению или по его части подается пропановоздушная смесь

Поток горючей смеси по всему входному сечению

При скорости, меньшей критической $U < U_*$ =1220 м/с, детонации нет

При $U > U_*$ отошедшая ударная волна превращается в детонационную –

Для $U_* < U < U_{**}$ волна движется ко входному сечению из-за «запирания» канала, вызванного теплоподводом, и **выходит из него.**

Комбинированный сверхзвуковой поток: пропановоздушный у нижней стенки с воздушным над ним

При $U > U_*$ отошедшая ударная волна инициирует детонацию в струе. При $U > U_{***} = 1740$ м/с детонационная волна стабилизируется — занимает фиксированное положение, а к ней примыкает ударная волна в воздухе.

Комплекс из детонационной и ударной волны

В интервале скоростей $U_* < U < U_{***}$ происходит «запирание» потока и детонационная волна вместе с ударной волной в воздухе выходит из канала. Возможны **2 режима** нестационарного течения **с детонацией**, разделяемых **критической скоростью**

При $U_{**} < U < U_{***}$ комплекс, состоящий из детонационной волны и примыкающей ударной, сохраняет форму и выходит из канала:

 $U_{**} = 1400 \text{ m/c}$

Галопирующая детонация

При $U_* < U < U_{**}$ возникает галопирующая детонация.

Периодически:

1)ударная волна обгоняет детонационную

2) большой участок струи детонирует с выходом детонационной волны вперед

3) детонационная волна остается на месте или откатывается назад

Аналогия с поршнем, вызывающим детонацию

Вместо уступа – твердая стенка поперек всего канала. Стенка мгновенно перегораживает сверхзвуковой поток и в системе координат, движущейся с потоком, играет роль поршня. Нет стационарного течения, но реализуется **галопирующий режим детонации**:

Частота галопирования увеличивается с ростом *U* вплоть до превращения в стационарный волновой комплекс

Инициирование расходящейся детонации в узком зазоре

между параллельными пластинами

Через круглое отверстие проникает плоская волна детонации, сформированная в трубке, присоединенной под прямым углом к пластине.

Схема и результаты эксперимента, проведенного Р.И. Солоухиным (1962):

Следы тройных точек за расходящейся цилиндрической волной детонации (результат эксперимента, Р.И. Солоухин):

ЭКСПЕРИМЕНТ

Следы тройных точек за расходящейся цилиндрической волной детонации при тенденции затухания на начальной стадии (результат эксперимента, Р.И. Солоухин):

ЭКСПЕРИМЕНТ

РАСЧЕТ

Ячеистая детонация в канале квадратного сечения

Для каналов, у которых оба линейные размеры сечения допускают распространение поперечных волн, получена трехмерная ячеистая структура детонации с поперечными волнами, распространяющимися в плоскости сечения, существенно отличающаяся от двумерных. При этом форма следов на поверхности канала отличается от ромбовидной. Численная шлирен-диаграмма в канале квадратного сечения *Hx*=*Hy*=1 см:

Ячеистая детонация в канале эллиптического сечения

Проведены расчеты для эллиптического сечения канала с длинами полуосей 0.5 и 1 см. Получена сложная и нерегулярная структура детонации с трехмерными детонационными «ячейками». Инициирование детонации – у закрытого конца.

Все расчеты трехмерной детонации выполнены на суперкомпьютере «Ломоносов» с числом расчетных ячеек от 100 млн. до 10 млрд. и распараллеливанием до 10000 процессорных ядер.

Формирование спиновой детонации в канале круглого сечения

Инициирование детонации — как и ранее вблизи закрытого конца канала. При диаметре канала, меньшем размера детонационной ячейки, спиновая детонация формируется спонтанно и без внешних воздействий из-за неустойчивости одномерного течения.

Следовая картина на поверхности канала круглого сечения:

Все расчеты трехмерной детонации выполнены на суперкомпьютере «Ломоносов» с числом расчетных ячеек от 100 млн. до 10 млрд. и распараллеливанием до 10000 процессорных ядер.

Спасибо за внимание!