

XIV международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ»

ЗАБАБАХИНСКИЕ

ЧНЫЕ ЧТЕНИЯ

2019

18-22 марта 2019 г. Снежинск, Россия

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Моделирование развития неустойчивостей Рэлей-Тейлора, Рихтмайера-Мешкова, Кельвина-Гельмгольца на мощных лазерных установках

О.Г. Котова^{*}, И.В. Глазырин, К.Ф. Гребенкин, Н.А. Михайлов, К.С. Назаров, М. Н. Чижков

РФЯЦ-ВНИИТФ имени академика Е.И.Забабахина 456770, Россия, г. Снежинск, ул. Васильева, д. 13 *<u>ogkotova@vniitf.ru</u>

Мощные лазерные установки

ГАРПУН	100 нс	100 Дж		I=2-5•10 ⁸ Вт/см ²
NIKE	4 нс	300 Дж	56 пучков	I = 1.4•10 ¹² Вт/см ²
ИСКРА-4	1.2 нс		4 пучка	I = 0.5-1•10 ¹⁴ Вт/см ²
SG-II	2 пс	1.5 кДж	8 пучков	
SG-IIUp	3 нс	40 кДж	8 пучков	
SG-III	Знс	200 кДж (2012)	48 пучков	1.4 МДж (2020)
OMEGA	1 нс	5 кДж	10 пучков	I = 6•10 ¹⁴ Вт/см ²
NIF		1.8 МДж	192 пучка	
Лазер	Знс	2 кДж		

На мощных лазерных установках возможно достижение термодинамических состояний веществ, характерных для сильно сжимаемых течений с высокими плотностями энергии

OMEGA: PT-PM неустойчивости миниатюрная ударная труба

A.R. Miles, M.J. Edwards, B. Blue, J.F. Hansen, H.F. Robey, R.P. Drake, C. Kuranz, and D.R. Leibrandt The effect of a short-wavelength mode on the evolution of a long-wavelength perturbation driven by a strong blast wave/ Physics of Plasmas 11, 5507 2004.

Mode 1: $\lambda = 50 \ \mu m$, $a = 2.5 \ \mu m$ (ka = 0.3), 120 ppw Mode 10: $\lambda = 5 \ \mu m$, $a = 0.25 \ \mu m$ (ka = 0.3), 12 ppw

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках <u>О.Г. Котова</u>*, И.В. Глазырин, К.Ф. Гребенкин. 3/15

Моделирование. Программа ФОКУС*

*Н.А. Михайлов, И.В. Глазырин Метод укручения контактных границ для моделирования трёхмерных многофазных сжимаемых течений в эйлеровых переменных. Забабахинские научные чтения. Сборник тезисов XIII Международной конференции 20-24 марта 2017. Снежинск, Изд-во РФЯЦ-ВНИИТФ б с.326, 2017.

система уравнений многокомпонентной газовой динамики в эйлеровых переменных в декартовой с.к.

$$\vec{u} = \left(\rho_1 \alpha_1, \dots, \rho_N \alpha_N, \rho v_x, \rho v_y, \rho v_z, \rho E, \alpha_1, \dots, \alpha_{N-1}\right)'$$

 $\frac{\partial \vec{u}}{\partial t} + \nabla \cdot \vec{f}(\vec{u}) = \vec{b}$

состоит из векторов физических потоков в каждом направлении

 $\left(\vec{f}_x,\vec{f}_y,\vec{f}_z\right)$

 $lpha_k \!=\! V_k \! / \! V$ -объёмная доля k-й компоненты

Расчеты проводятся на **трехмерной неструктурированной сетке** из произвольных многогранников. Для дискретизации используется метод конечного (контрольного) объема

Нормальные потоки в центрах граней ячеек определяются по схеме **типа Годунова** (HLL). В смешанных ячейках потоки считаются с учётом границы между веществами – **геометрический VoF**

Для восстановления величин применяется **многомерная** кусочно-линейная реконструкция с **TVD** ограничителем.

Дискретизация по времени выполнена методом Hancock

Второй порядок по пространству и по времени

Постановка 2D расчета

УРС идеального газа

- $P = (\gamma 1) \rho C_{\nu} T.$
- давление в областях 3 и 4 одинаково
- на границе 3-4 синусоида λ = 50 мкм, A= 2.5 мкм.

• области 2-4 сетка квадратная $\,\Delta$ = 0.5 мкм:, на λ 100 ячеек, на A – 5.

•ГУ: правое-левое – свободный выход.; верх-низ – стенка

N⁰	Название	Плотность, <i>р</i> г/см ³	Показатель адиабаты γ	С _{ν,} лом/(г×кэВ)	Температура Т, кэВ	Ширина, мм
1-	гелий	0.01	5/3	3.6	1.0×10 ⁻³	10
2	полиамид	1.41	5/3	10	2.5×10 ⁻⁵	0.01
3	полиамид	1.41	5/3	10	2.5×10⁻⁵	0.1
4	пенопласт	0.1	7/5	10	4.5×10 ⁻⁵	1.9

Энергия выделяется **равномерно** по площади фокального пятна за 1 нс на глубину скин-слоя h = 10 мкм.

*E*₀ = 1.57·10⁶ Дж/г·нс коэффициент поглощения энергии ЛИ 35%.

5/15

положение УВ и КГ

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках О.Г. Котова*, И.В. Глазырин, К.Ф. Гребенкин.

Сравнение CALE *- Фокус * R. T. Barton, Numerical Astrophysics (Jones and Bartlett, Boston, 1985).

скорость границы раздела веществ

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках

t, HC

О.Г. Котова*, И.В. Глазырин, К.Ф. Гребенкин.

6/15

<mark>Динамика струй и пузырей 🛛 🕅</mark>

Плотность г/см³ в постоянном диапазоне 0.004 - 0.4

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках <u>О.Г. Котова</u>*, И.В. Глазырин, К.Ф. Гребенкин.

OMEGA: КГ неустойчивость

him

(*) K.S. Raman, O.A. Hurricane, H.S. Park, B.A. Remington, H. Robey, V.A. Smalyuk. Three-dimensional modeling and analysis of a high energy density Kelvin-Helmholtz Experiment Physics of Plasmas, 22 2012. LLNL-JRNL-531731.

Постановка 2D, 3D расчётов

расчет 3D ARES

- давление выровнено
- на границе 3-5 синусоида λ = 400 мкм, A= 30 мкм.

- области 2-4 сетка квадратная $\Delta = 1$ (15) мкм:, на λ 400 (26) ячеек, на A 30. (2)
- •ГУ 2D: правое-левое свободный выход.; верх-низ стенка
- ГУ 3D: у = 0 плоскость симметрии, остальные границы свободные.

№ области	1	2	3	4	5	6
вещество-	гелий	пластик	пластик	пластик	пена	бериллий
r, г/см ³	0.01	1.05	1.45	1.41	0.1	1.84

Динамика роста амплитуды волн

t, HC

10/15

rho

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках <u>О.Г. Котова</u>*, И.В. Глазырин, К.Ф. Гребенкин.

Сравнение **ARES*** - Фокус

R.M. Darlington, T. L.McAbee, and G. Rodrigue, Comp. Phys.Comm. 135, 58 (2001)

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках <u>О.Г. Котова</u>*, И.В. Глазырин, К.Ф. Гребенкин.

11/15

Прогноз экспериментов для Е=2кДж РТ-РМ неустойчивости

Распределение концентраций веществ в области 3 (синий цвет) и в области 4 (лиловый) с учетом градиента плотности для среднего отношения плотностей. Моменты времени справа налево 40, 80 и 120 нс.. Размеры указаны в миллиметрах

Пузыри и струи при гармоническом и пилообразном возмущениях имеют схожую форму и размеры. Структура течения регулярная.

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках О.Г. Котова*, И.В. Глазырин, К.Ф. Гребенкин.

Прогноз экспериментов для Е=2кДж РТ-РМ неустойчивости

13/15

Возмущение: суперпозицию двух пилообразных возмущений: 1) $\lambda_1 = 200$ мкм, $a_1=20$ мкм 2) $\lambda_2 = 128$ мкм, $a_2 = 10$ мкм.

Начальная форма границы

Распределение концентраций веществ в области 3 (синий цвет) и в области 4 (лиловый) с учетом градиента плотности для малого отношения плотностей (вверху), среднего (в центре) и большого (внизу). Моменты времени соответствуют положению фронта УВ x = 1.8 мм: 160, 100 и 45 нс, соответственно. Размеры указаны в миллиметрах

С ростом отношения плотностей неустойчивость на контактных границах развивается быстрее, и в случае наибольшего отношения оболочка из пластика практически разделилась на отдельные фрагменты

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках <u>О.Г. Котова</u>*, И.В. Глазырин, К.Ф. Гребенкин.

Прогноз экспериментов для Е=2кДж КГ неустойчивость

в случае E=2кДж УВ движется медленнее в среднем на 20% при сохранении темпа торможения. Вследствие этого неустойчивость КГ развивается менее интенсивно. Вихревые структуры растут с меньшей скоростью. НО! Общая картина течения не меняется, и уровень развития неустойчивости сохраняется.

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках <u>О.Г. Котова</u>*, И.В. Глазырин, К.Ф. Гребенкин.

Поскольку

1 программа Фокус корректно описывает развитие гидродинамических неустойчивостей;

2 Энергии 2кДж лазерного импульса длительностью 3 нс достаточно для изучения неустойчивостей при различном отношении плотностей веществ

<u>Необходимо</u>

подробно обсуждать постановку экспериментов

Спасибо за внимание

Моделирование развития неустойчивостей РТ, РМ, КГ на мощных лазерных установках <u>О.Г. Котова</u>*, И.В. Глазырин, К.Ф. Гребенкин.