ПРЕДПРИЯТИЕ ГОСКОРПОРАЦИИ "РОСАТОМ"

ФГУП "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВТОМАТИКИ им. Н.Л.Духова"

Аномальные эффекты в поглощении лазерного излучения

С. И. Глазырин^{1,4}, А. В. Брантов^{2,1}, Г. В. Долголёва³, С. А. Карпов¹, И. Ф. Потапенко^{3,1}, В. Ю. Быченков^{2,1}

¹Всероссийский научно-исследовательский институт им. Н.Л. Духова ²Физический институт им. П.Н. Лебедева РАН ³Институт прикладной математики им М.В. Келдыша РАН ⁴Институт теоретической и экспериментальной физики НИЦ КИ

Забабахинские научные чтения

20 – 24 марта 2017

Лазерный термоядерный синтез

Непрямое облучение Для попыток зажигания

- Используются специальные схемы облучения
 - ... многослойные мишени
- ... выверенные профили лазерного импульса

Прямое облучение

Кинетика в плазме ЛТС

- Отсутствие зажигания мишеней на NIF показало недостаточность понимания физических процессов в ЛTC
- Наибольший отрицательный вклад на работу мишени оказывают
 - Неконтролируемый рост возмущений за счёт гидродинамических неустойчивостей
 - Асимметрия сжатия
- Кинетические эффекты могут оказать значительное влияние, хотя ими обычно пренебрегают в ЛТС-расчётах. Часть эффектов обсуждается в докладе:
 - Влияние теплопереноса на поглощение
 - Аномальное поглощение на ионно-звуковой неустойчивости

Важная задача – исследовать все эффекты по отдельности

Распространение тепловой волны Тепловой поток по Спитцеру–Харму

$$q = -\kappa_{\rm SH} \nabla T_e$$

Гидродин.: FRONT3D Фоккер–Планк: 1D3V

должен быть ограничен для больших градиентов

$$q < q_{\max} = f n_e v_{Te} T_e$$

Для $\lambda_e/L \gtrsim 0.01$ кинетические эффекты доминируют – необходим кинетический расчёт

Тепловая волна при поглощении лазерного излучения

- Теплопроводность контролирует эффективность поглощения через $T_e(n = n_{\rm cr})$
- Для простой модели поглощения по обратнотормозным процессам тепловой поток

$$q(t) = \frac{16}{15} \frac{L_f}{c} \nu_{ei}^{(n_c)} I(t) \propto Z T_e^{-3/2} I(t)$$

 Расчёты с одинаковой интенсивностью *I(t)* в кинетике и гидродинамике:

Тепловая волна при различных вариантах поглощения

Внесённая в систему энергия для

- *q* заданный поток тепла
- I_{las} заданный лазерный поток
- *T* = 200 заданная температура стенки

- В данной упрощённой постановке кинетика показывает наиболее эффективное поглощение
- Необходима согласованность между моделью теплопереноса и моделью поглощения

Исследование аномального поглощения Bychenkov, Rozmus Phys. Plasmas (2017)

- Быстрые электроны производят обратный ток
- Обратный ток генерирует ионно-звуковую турбулентность (ИЗТ) за счёт ионно-звуковой неустойчивости

8

- Лазерное излучение поглощается на неоднородностях (на ИАТ)
- ИАТ даёт существенный вклад в поглощение для Z>20и $T\gtrsim 1$ кэВ

$$\frac{\partial I}{\partial t} + \mathbf{v}_0 \frac{\partial I}{\partial \mathbf{r}} = -\frac{\omega_{pe}^2}{\omega_0^2} \left(\nu_{\rm ei} + \nu_{\rm eff} + \nu_{\rm eff}^R \right)$$

• У поглощения появляется зависимость от поляризации

$$\nu_{\text{eff}}^{R} = \nu_{\perp}^{R} + \frac{\nu_{\parallel}^{R} - \nu_{\perp}^{R}}{2k_{0}^{2}} \left[\mathbf{k}_{0} \times \mathbf{n}\right]^{2}$$

Исследование аномального поглощения

- Лазер создаёт плазменную корону из вещества с большим Z
 - Пробный лазерный луч просвечивает плазму в районе ρ_c

9

Диагностика:

- Измеряется поглощение пробного пучка
- Аномальное поглощение приведёт к зависимости поглощения от поляризации
- Томсоновская диагностика для измерения профилей T_e

Критерий возникновения аномального поглощения

Критерий развития ионно-звуковой неустойчивости:

$$\gamma(k) = \gamma_e(k) - \gamma_i(k),$$

Система неустойчива, если

 $\max_k \gamma(k) > 0.$

$$\left(\frac{\lambda_{ei}}{T_e}\frac{dT_e}{dx} > 0.011\frac{Z+2.12}{Z+0.5}\sqrt{\frac{2Z}{A}}\left(1+\delta\right)\right), \quad \delta = 43Z\sqrt{\frac{AT_e^3}{T_i^3}}\exp\left(-\frac{ZT_e}{2T_i}\right)$$

Критерий может быть переписан через тепловой поток:

$$\frac{q_e}{n_e T_e c_s} > 8.3 \cdot \frac{Z + 2.12}{Z + 0.5} \cdot \frac{Z + 0.24}{Z + 4.2} \cdot (1 + \delta). \tag{1}$$

10

Brantov et al. Phys. Plasmas (2001)

Условия для аномального поглощения

Для реализации неустойчивости необходимо либо

- Большой тепловой поток q_e
- Сильное различие $T_e/T_i \gg 1$ или большой заряд $Z \gg 1$

Исследовалось только выполнение критерия (постобработкой расчётов):

Cu, $I \approx 10^{15} \text{ BT/cm}^2$

Kog SND

Cu, $I \approx 10^{16} \text{ BT/cm}^2$

Облучение мишени с небольшим зарядом Z

- Для мишени с небольшом зарядом (пластик) ионный вклад – δ, выключается постепенно
- Критерий выполняется в широкой области, включая низкие плотности Код SND

CH, $I \approx 10^{16} \text{ Bt/cm}^2$

Профили интенсивности

Заключение

- Учёт кинетических эффектов белое пятно в большинстве ЛТС–расчётов
- Мы проводим программу по исследованию новых эффектов по отдельности (на примере упрощённых постановок)
- Модификация поглощения возможна за счёт кинетического теплопереноса и ионно–звуковой турбулентности
- На примере простой модели поглощения исследовались различные варианты теплопереноса, явно показано его влияние на эффективность поглощения
- Для аномального поглощения выписан критерий его появления и показано, что оно проявляется при $I\gtrsim 10^{16}~{\rm Br/cm^2}$

Спасибо за внимание!

