



the second second second

# Thermal Responses of PBX-6 Explosives Components

Institute of Chemical Materials, CAEP

ARE CARE THE PARTY

Dayuan GAO, Zijian LYU, Luoxia CAO et al



The thermal sensitivity and safety of explosive and its component have been paid attention to by domestic and abroad researchers, and the corresponding methods of experiment and evaluation are established.

- 2 Experimental
- 2.1 Preparation of samples







(a) modeling powder (b) explosive cylinder (c) half sphere Fig.1 Explosive samples of different sizes The 13th International Conference "ZABABAKHIN SCIENTIFIC TALKS"





### 2.2 Method of explosion point test



5s delay explosion temperature( $T_{5s}$ )

1000s critical temperature( $T_{1000s}$ )

Fig.2 Scheme of explosion point test setup





**2.3 Method of thermal explosion test** 



**Fig.3 Scheme of Unlimited thermal explosion test setup**  Fig.4 ODTX reactor and sample assemble sketch one dimension time-to-explosive test is one of standard method to evaluate the safety of explosive component in U.S.A

critical temperature  $(T_m)$ delay time (t)



TALKS"





## destruction degree of sample reactor

(a) non-reaction
(b) middle pressure release
(c) low level reaction
(d) high level reaction

**Fig.5 Evaluated method of reaction grades in ODTX test** 





## 2.4 Method of cook-off test bonfire stimulation slow heating stimulation



Fig.6 Photograph of fast cook-off test for explosive component



Fig.7 Photograph of slow cook-off test setup of encased thermocouples and explosive components









**3.1 Explosion points of small-scale explosive** 

The thermal sensitivity of small-scale explosive were characterized by  $T_{5s}$  and  $T_{1000s}$ . The bigger of those values, the lower of the thermal sensitivity.

PBX-6:  $T_{5s}$ =330°C  $T_{1000s}$ =255°C







## **3.2 Critical temperatures and delay times of thermal explosion**

#### □ Unlimited state

#### Table 1 Thermal explosion testing results of PBX-6 explosive cylinder

| size              | $T_{a}^{\prime}/^{\circ}C$ | $\Delta T / ^{\circ}C$ | <i>t</i> / s | phenomena | T <sub>m</sub> /°C |
|-------------------|----------------------------|------------------------|--------------|-----------|--------------------|
| <b>Φ10mm×10mm</b> | 212.0`                     | 11.2                   | 13860        | ТЕ        | 210.0              |
|                   | 208.0                      | 8.9                    | 36000        | TD        |                    |
| Ф20mm×20mm        | 200.5                      | 7.6                    | 31200        | ТЕ        | 200.2              |
|                   | 199.9                      | 7.0                    | 36000        | TD        |                    |
| Ф30mm×30mm        | 198.0                      | 7.9                    | 29640        | ТЕ        |                    |
|                   | 197.0                      | 8.0                    | 36000        | TD        | 197.5              |





## The relationship of the critical parameter $\delta$ , the radius rand the critical temperature $T_m$ can be expressed as

$$\ln\left(\frac{\delta T_m^2}{r^2}\right) = 162.34 - \left(\frac{115692}{T_m}\right) \qquad \Phi 40 \text{mm} \times 40 \text{mm} \\ T_m = 194.6^{\circ}\text{C}$$

The experiential relationship between the delay time t of thermal explosion and the environment temperature  $T_a$  is as follows.

$$\ln t = C_2 + \frac{E}{RT_a} \qquad T_a > T_m \rightarrow \text{calculation } t$$





#### Table 2 ODTX results of PBX-6 explosive cylinder

| No.                         | $T_{a}^{\prime \circ}$ C | <i>t</i> /s | phenomena | grades              | $T_{\rm m}^{\rm o}/{\rm ^{o}C}$ |
|-----------------------------|--------------------------|-------------|-----------|---------------------|---------------------------------|
| <b>PBX-6-3</b> <sup>#</sup> | 194                      | 14940       | ТЕ        | high level reaction |                                 |
| <b>PBX-6-4</b> <sup>#</sup> | 192                      | 15420       | TE        | high level reaction |                                 |
| <b>PBX-6-5</b> <sup>#</sup> | 187                      | 36000       | TD        | no reaction         |                                 |
| <b>PBX-6-6</b> <sup>#</sup> | 179                      | 36000       | TD        | no reaction         | 189.5                           |







## **Constraint effect**

Unlimited One $\Phi$ 30×30mm  $T_{\rm m}$ =197.5 °C

 $\Delta \Phi$ =-17.3mm  $\Delta T_{\rm m}$ =-8 °C Limited two $\Phi$ 12.7×25.4mm  $T_{\rm m}$ =189.5°C

Because the explosive cylinders are confined, product of thermal decomposition is not easy to come out and the heat is not easy to convey to environment, and make it easier to reach the critical condition of thermal explosion comparing to the unlimited one.





#### **3.3 Time and temperature of deflagration** for cook-off test

### **Bonfire heating**









bonfire

thermal decomposition

combustion

explosion

Fig.10 photographs of DV kinescope in fast cook-off test





#### HS-2<sup>#</sup> sample (65°C, 180d)

## **Fig.11 Temperature curves of explosive components measured in fast cook-off test**









**HS-2**<sup>#</sup>



**HS-3**<sup>#</sup>

Fig.12 Photographs of scrap in fast cook-off test for PBX-6 explosive component The 13th International Conference ZABABAKHIN SCIENTIFIC TALKS"





#### Table 3 Results of fast cook-off test for PBX-6 explosive components

| No.               | condition of<br>aging | ρ<br>/(g·cm <sup>-3</sup> ) | deflagration<br>time / s | deflagration<br>temperature/°C | grade        |
|-------------------|-----------------------|-----------------------------|--------------------------|--------------------------------|--------------|
| HS-1 <sup>#</sup> | unaging               | 1.843                       | 519                      | 311.0                          |              |
| HS-2 <sup>#</sup> | 65°C, 180d            | 1.838                       | 493                      | 281.4                          | deflagration |
| HS-3 <sup>#</sup> | 65°C, 365d            | 1.836                       | 477                      | 269.5                          |              |

The deflagration time was shortened, and the deflagration temperature was lowered with increasing of the aging time.



#### **Fig.13** Change curves of surface temperature for the explosive spheres





MK-1<sup>#</sup> (5°C·min<sup>-1</sup>) Fig.14 Photographs of scrap in slow cook-off test of explosive components The 13th International Conference "ZABABAKHIN SCIENTIFIC TALKS"





# Table 4 Results of slow cook-off test for PBX-6 explosive components

| No.                      | heating<br>rates<br>/(°C∙min⁻¹) | deflagration<br>time<br>/s | deflagration<br>temperature<br>/°C | shock wave<br>overpressure<br>/kPa | grade        |
|--------------------------|---------------------------------|----------------------------|------------------------------------|------------------------------------|--------------|
| <b>MK-1</b> <sup>#</sup> | 5                               | 4074                       | 224.9                              | 21.8                               | deflagration |
| <b>MK-2</b> <sup>#</sup> | 2                               | 8373                       | 218.5                              | -                                  | reaction     |

The deflagration time was shortened, and the deflagration temperature was increased with increasing of the heating rate.

- (1) The methods of explosion point test of small scale explosive, thermal explosion test of explosive cylinder, and cook-off test of explosive spheres have been established.
   (2) The thermal sensitivity and safety for PBX-6
- explosive samples of different scales are synthetically evaluated by analyzing the response characteristics at various thermal stimulus.



- (1) The cook-off test of specimens under conditions of different accelerated aging and long-term stored will been developed.
- (2) The numerical simulation will been carried out. Combining testing and numerical results, the effects of aging on thermal safety of explosive components will been investigated.

