ПРИМЕНЕНИЕ ТЕРМОГРАФИИ ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛЕЙ ТЕМПЕРАТУРЫ В ПЛАМЕНИ ПРИ ГОРЕНИИ НЕКОТОРЫХ ВИДОВ ТОПЛИВ И СВЯЗЬ ПУЛЬСАЦИЙ ТЕМПЕРАТУРЫ С МАСШТАБАМИ ТУРБУЛЕНТНОСТИ

Лобода Е.Л.¹, Матвиенко О.В.¹, Агафонцев М.В.¹, Рейно В.В.²

¹ Томский государственный университет

² Институт оптики атмосферы имени В.Е. Зуева СО РАН

Натурные экспериментальные исследования распространения степных и полевых пожаров

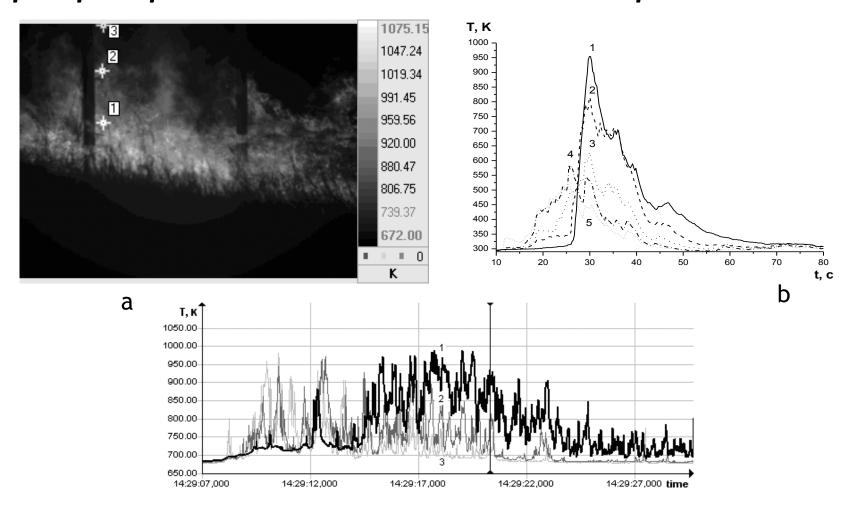


Рис. 1. Термограмма (a), изменение температур во фронте пожара в точках 1, 2, 3 (b) изменение температур во фронте пожара по зарегистрированным показаниям термопар и изменение температур по данным, полученным с тепловизора JADE J530SB (c)

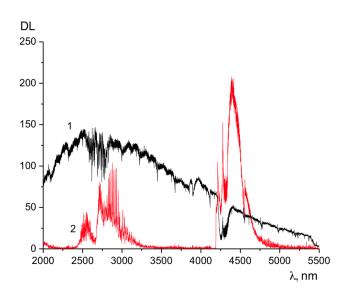


Рис. 2. Спектр пламени, образующегося при горении пропан-бутановой смеси

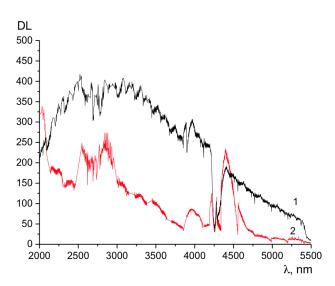


Рис. 4. Спектр пламени, образующегося при горении дизтоплива

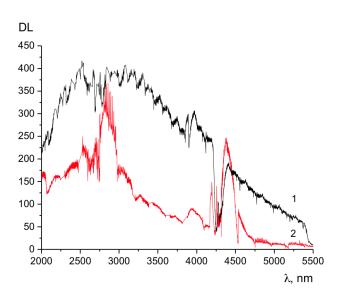


Рис. 3. Спектр пламени, образующегося при горении керосина

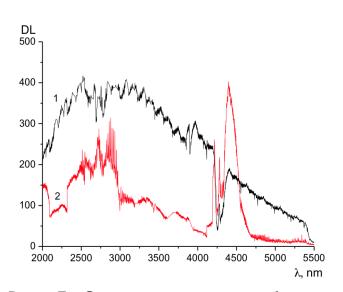


Рис. 5. Спектр пламени, образующегося при горении бензина

Таблица 1. Значения $\bar{\tau}_f$ пламени, образующегося при горении растительных горючих материалов, для различных спектральных интервалов.

Спектральный	T _{BB} , K	Число	$\overline{ au}$	$\overline{\tau} \pm \Delta \tau$	σ
интервал		слоев			
_		пламени			
2.5-2.7 мкм	1200	1	0.638	0.619-	0.0316
				0.656	
	1300	2	0.585	0.561-	0.0206
				0.608	
	1300	3	0686	0.662-	0.0242
				0.709	
2.64-3.25 мкм	1300	1	0.974	0.966-	0.0081
				0.982	
		2	0.982	0.974-	0.0074
				0.989	
4-5 мкм	1300	1	0.024	0.013-	0.0106
				0.034	
		2	0		
		3	0		
4.35 (полоса	1300	1	0		
пропускания		2	0		
180 нм)		3	0		
3.1-3.3 мкм	1300	1	0.626	0.608-	0.0185
				0.644	
3.7-3.9 мкм	1300	1	0.916	0.906-	0.0102
				0.926	
		2	0.92	0.911-	0.0089
				0.929	

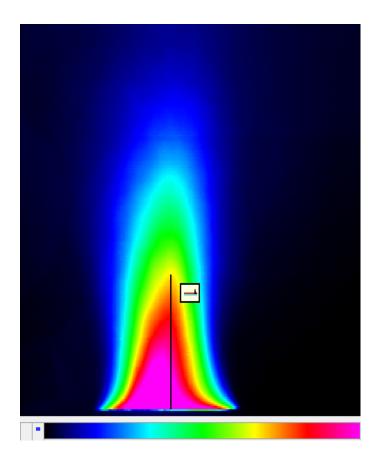


Рис. 6. Осредненная по времени термограмма факела пламени при горении спирта.

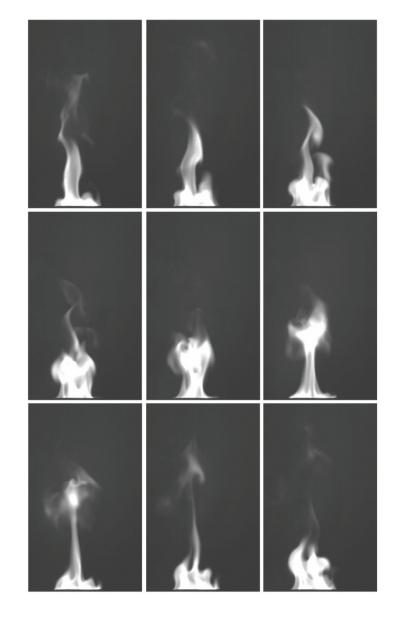


Рис. 7. Последовательность мгновенных термограмм при горении спирта.

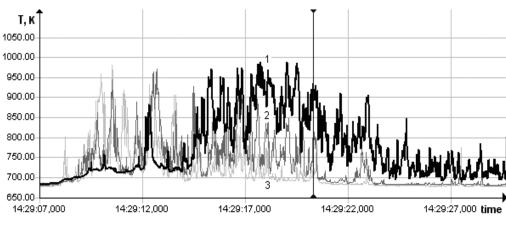


Рис. 8. Изменение температуры в пламени.

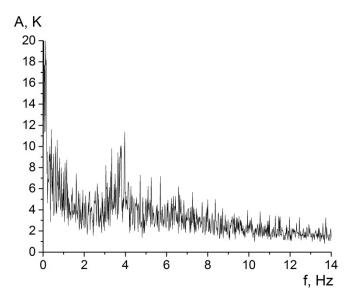


Рис. 10. Спектр изменения температуры в пламени при горении дизельного топлива

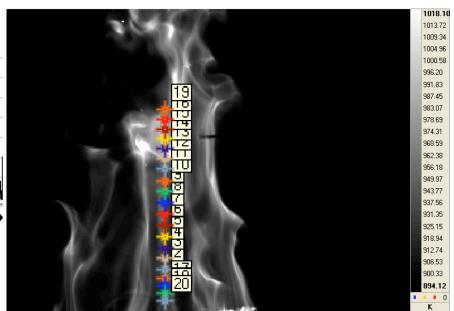


Рис. 9. Термограмма факела пламени, полученная на тепловизоре JADE J530SB в спектральном диапазоне $2,5 \div 2,7$ μ m, время экспозиции кадра $64~\mu$ s.

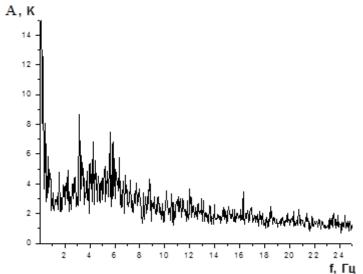


Рис. 11. Спектр изменения температуры в пламени при горении растительных горючих материалов по данным тепловизора

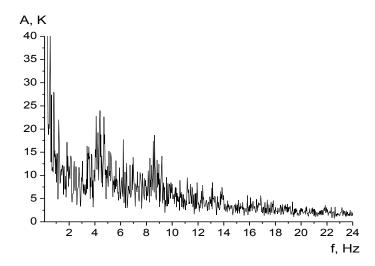


Рис. 13. Спектр изменения температуры в пламени при горении бензина топлива по данным тепловизора

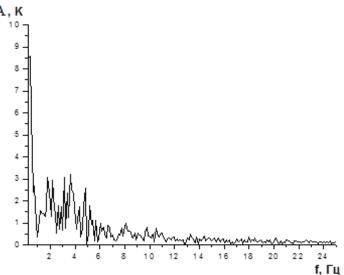


Рис. 12. Спектр изменения температуры в пламени при горении растительных горючих материалов по данным тепловизора

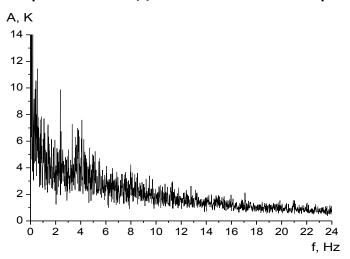


Рис. 14. Спектр изменения температуры в пламени при горении керосина по данным тепловизора

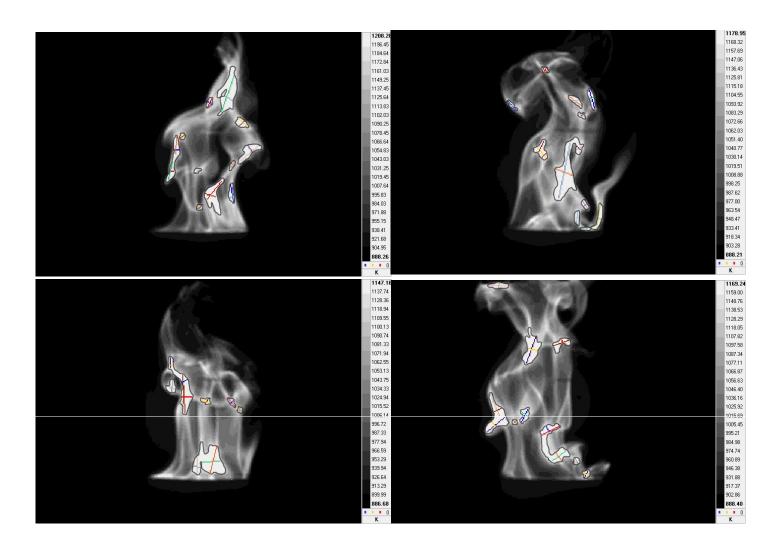


Рис. 15. Мгновенные термограммы пламени горения дизельного топлива.

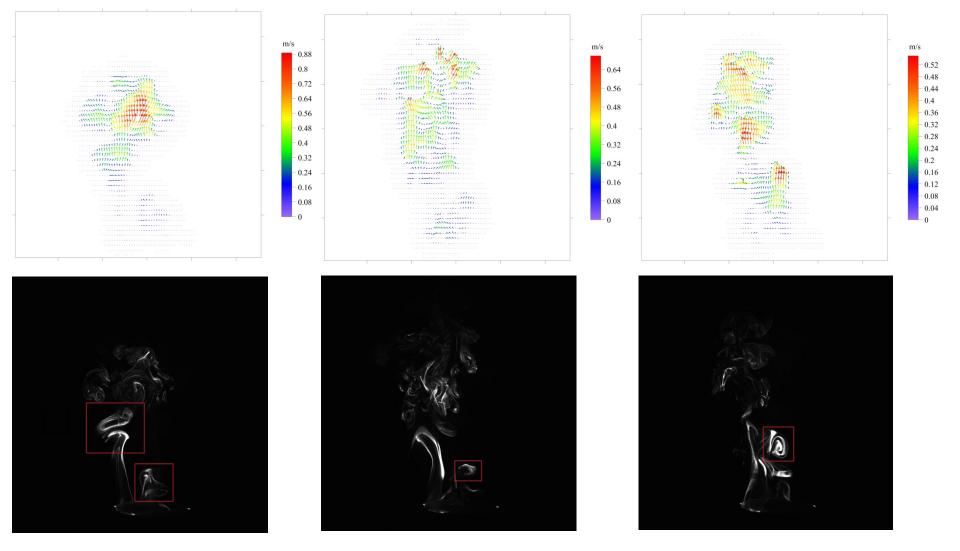


Рис. 16. Мгновенные поля скорости и PIV-изображения пламени при горении спирта.

Расчет масштаба турбулентных вихрей, полученный на основе гипотезы подобия пульсаций полей скорости и температуры

$$b = \frac{\sqrt{k}}{f} = f^{-1} \frac{\sqrt{\langle T'T' \rangle}}{T} \sqrt{gL}$$

Сравнение результатов экспериментальных измерений с теоретическими оценками масштабов турбулентности

Топливо	$L\left(\mathbf{m}\right)$	f±Δf (Hz)	<i>b</i> ±Δ <i>b</i> (m)	$b_{\rm exp} \pm \Delta b_{\rm exp} ({\rm m})$	Ri_t	Fr_t
Этанол	0.3	4.6±0.5	0.0032±0.0002	0.0033±0.0015	0,05596	17,8712
Бензин	0.7	4.8±0.8	0.025±0.005	0.024±0.004	0,2014	4,9659
		8.6±0.5	0.014±0.001	0.015±0.003	0,1124	8,8973
Керосин	0.7	2.5±0.1	0.157±0.006	0.019±0.005	0,2907	3,4402
		4.0±0.5	0.098±0.014	0.012±0.004	0,2180	4,5869
Дизельное топливо	0.5	4.0±1	0.025±0.0055	0.019±0.006	0,1846	5,4183

Для описания поля течения используются двумерные осесимметричные уравнения Рейнольдса, записанные относительно осредненных по времени составляющих скорости: u, v и давления p:

$$\begin{split} \frac{\partial \rho u}{\partial x} + \frac{1}{r} \frac{\partial \rho vr}{\partial x} &= 0 \\ \frac{\partial \rho u^2}{\partial x} + \frac{1}{r} \frac{\partial \rho uvr}{\partial r} &= -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[\mu_{\text{eff}} \left(2 \frac{\partial u}{\partial x} - \frac{2}{3} \left(\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial vr}{\partial r} \right) \right) \right] + \frac{1}{r} \frac{\partial}{\partial r} \left[\mu_{\text{eff}} r \left(\frac{\partial u}{\partial r} + \frac{\partial v}{\partial x} \right) \right] - (\rho - \rho_e) g \\ \frac{\partial \rho uv}{\partial x} + \frac{1}{r} \frac{\partial \rho v^2 r}{\partial r} &= -\frac{\partial p}{\partial r} + \frac{\partial}{\partial x} \left[\mu_{\text{eff}} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial r} \right) \right] + \frac{1}{r} \frac{\partial}{\partial r} \left[\mu_{\text{eff}} r \left(2 \frac{\partial v}{\partial r} - \frac{2}{3} \left(\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial vr}{\partial r} \right) \right) \right] - \frac{\mu_{\text{eff}} v}{r^2} \end{split}$$

Характеристики турбулентности рассчитывались на основе двухпараметрической модели с использованием уравнений для кинетической энергии турбулентности k и скорости ее диссипации ϵ с учетом действия сил плавучести и малости чисел Рейнольдса:

$$\begin{split} &\frac{\partial \rho k}{\partial t} + \frac{\partial \rho k}{\partial z} + \frac{1}{r} \frac{\partial \rho v k r}{\partial r} = \frac{\partial}{\partial z} \left[\frac{\mu_{eff}}{\sigma_{k}} \frac{\partial k}{\partial z} \right] + \frac{1}{r} \frac{\partial}{\partial r} \left[\frac{\mu_{eff}}{\sigma_{k}} r \frac{\partial k}{\partial r} \right] + G_{k} + G_{\rho} - I - \rho \epsilon \\ &\frac{\partial \rho \epsilon}{\partial t} + \frac{\partial \rho \epsilon}{\partial z} + \frac{1}{r} \frac{\partial \rho v \epsilon r}{\partial r} = \frac{\partial}{\partial z} \left[\frac{\mu_{eff}}{\sigma_{\epsilon}} \frac{\partial \epsilon}{\partial z} \right] + \frac{1}{r} \frac{\partial}{\partial r} \left[\frac{\mu_{eff}}{\sigma_{\epsilon}} r \frac{\partial \epsilon}{\partial r} \right] + \left(f_{1}G_{k} - f_{2}\rho \epsilon \right) \frac{\epsilon}{k} + J \\ &G_{k} = \mu_{t} \left\{ 2 \left[\left(\frac{\partial u}{\partial z} \right)^{2} + \left(\frac{\partial v}{\partial r} \right)^{2} + \left(\frac{v}{r} \right)^{2} \right] + \left(\frac{\partial u}{\partial r} \right)^{2} + \left(\frac{\partial v}{\partial z} \right)^{2} \right\}, \quad G_{\rho} = -\frac{\mu_{t}}{\rho \sigma_{k}} \frac{\partial \rho}{\partial z} g \qquad \qquad f_{2} = C_{2\epsilon} \left(1 - C_{4\epsilon} \exp(-R\epsilon_{t}^{2}) \right) \\ &I = \frac{1}{2} \frac{\mu_{t}}{k} \left[\left(\frac{\partial k}{\partial x} \right)^{2} + \left(\frac{\partial k}{\partial r} \right)^{2} \right] \quad J = 2 \frac{\mu \mu_{t}}{\rho} \left\{ \left[\left(\frac{\partial^{2} u}{\partial x^{2}} \right) + \frac{1}{r^{2}} \left(\frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) \right) \right]^{2} + \left[\left(\frac{\partial^{2} v}{\partial x^{2}} \right) + \frac{1}{r^{2}} \left(\frac{\partial}{\partial r} \left(r \frac{\partial v}{\partial r} \right) \right) \right]^{2} \\ &\mu_{t} = C_{\mu} f_{\mu} \rho k^{2} \epsilon^{-1} \qquad f_{\mu} = \exp \left[-\frac{3.4}{\left(1 + 0.02 \operatorname{Re}_{t} \right)^{2}} \right] \qquad \operatorname{Ri}_{st} = \frac{G_{\rho}}{G_{k}} \qquad \operatorname{Re}_{t} = \frac{\rho k^{2}}{\mu \epsilon} \end{split}$$

Для описания конвекции, процессов тепломассообмена и горения помимо уравнения энергии использовались уравнения баланса массы компонентов с учетом протекания в потоке экзотермической реакции:

$$\begin{split} &C_{p}\bigg(\frac{\partial\rho uT}{\partial x}+\frac{1}{r}\frac{\partial\rho vrT}{\partial r}\bigg)=\frac{\partial}{\partial x}\left[\lambda_{eff}\frac{\partial T}{\partial x}\right]+\frac{1}{r}\frac{\partial}{\partial r}\left[\lambda_{eff}r\frac{\partial T}{\partial r}\right]+Q\Phi\\ &\frac{\partial\rho uM_{fl}}{\partial x}+\frac{1}{r}\frac{\partial\rho vrM_{fl}}{\partial r}=\frac{\partial}{\partial x}\left[\rho D_{eff}\frac{\partial M_{fl}}{\partial x}\right]+\frac{1}{r}\frac{\partial}{\partial r}\left[\rho D_{eff}r\frac{\partial M_{fl}}{\partial r}\right]-0.5\frac{W_{fl}}{W_{ox}}\Phi\\ &\frac{\partial\rho uM_{ox}}{\partial x}+\frac{1}{r}\frac{\partial\rho vrM_{ox}}{\partial r}=\frac{\partial}{\partial x}\left[\rho D_{eff}\frac{\partial M_{ox}}{\partial x}\right]+\frac{1}{r}\frac{\partial}{\partial r}\left[\rho D_{eff}r\frac{\partial M_{ox}}{\partial r}\right]-\Phi\\ &\frac{\partial\rho uM_{pr}}{\partial x}+\frac{1}{r}\frac{\partial\rho vrM_{pr}}{\partial r}=\frac{\partial}{\partial x}\left[\rho D_{eff}\frac{\partial M_{pr}}{\partial x}\right]+\frac{1}{r}\frac{\partial}{\partial r}\left[\rho D_{eff}r\frac{\partial M_{pr}}{\partial r}\right]+0.5\frac{W_{pr}}{W_{ox}}\Phi\\ &\frac{\partial\rho uM_{in}}{\partial x}+\frac{1}{r}\frac{\partial\rho vrM_{in}}{\partial r}=\frac{\partial}{\partial x}\left[\rho D_{eff}\frac{\partial M_{in}}{\partial x}\right]+\frac{1}{r}\frac{\partial}{\partial r}\left[\rho D_{eff}r\frac{\partial M_{in}}{\partial r}\right]\\ &\Phi_{Ar}=z_{0}\rho M_{\mathrm{fl}}^{\alpha}M_{\mathrm{ox}}^{\beta}\exp\left(-\frac{E_{\mathrm{A}}}{R_{\mathrm{G}}T}\right) \end{split}$$

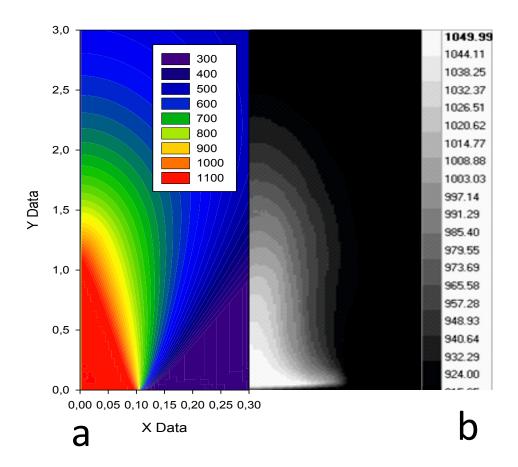


Рис. 17. Распределение средних температур в пламени и в его окрестности. а — результаты математического моделирования (изотермы в факеле пламени), b — осредненная по времени термограмма

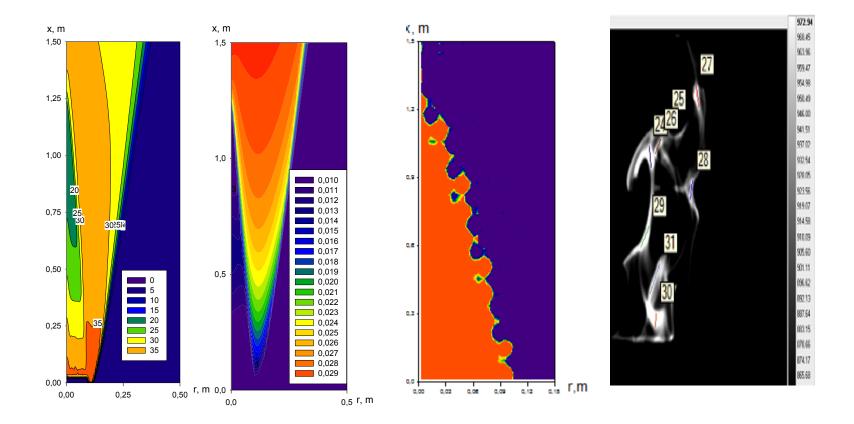


Рис. 18. Среднеквадратичные отклонения пульсаций температуры

- Рис. 19. Масштабы турбулентности
- Рис. 20. Восстановленное мгновенное поле температуры
- Рис. 21. Мгновенная термограмма факела пламени.

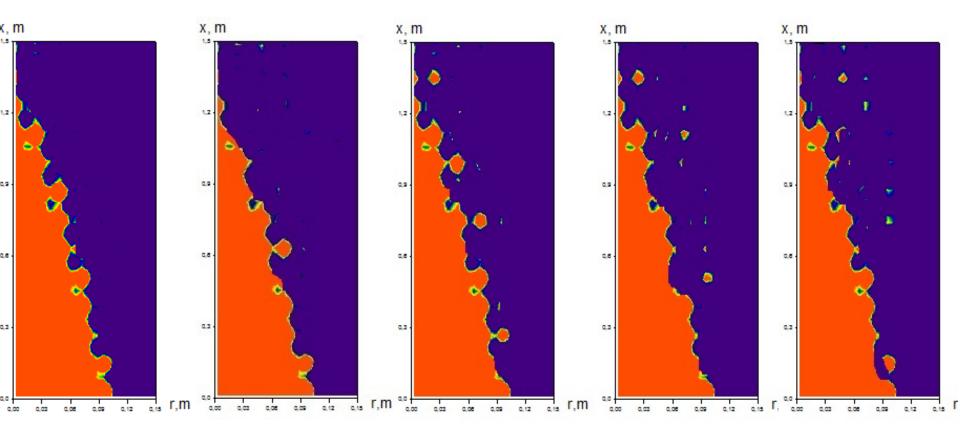


Рис. 22. Восстановленное мгновенное поле температуры, полученное при математическом моделировании

Выводы:

- В спектрах пульсаций температуры при горении жидких углеводородов присутствуют особые максимумы амплитуды в диапазоне 4 ± 1 Гц. Процесс горения носит цикличный характер, который возможно зафиксировать только с применением скоростных тепловизоров, работающих в узких спектральных интервалах среднего ИК-диапазона.
- Сравнение масштабов турбулентности, полученных экспериментально, с результатами численного моделирования дает хорошее количественное согласование, что дает возможность используя представленную методику производить оценку масштабов турбулентности в реальных пламенах.
- Пульсации температуры связаны с турбулентностью течения в пламени и характерные частоты в спектре изменения температуры обусловлены масштабами турбулентных вихрей.

Спасибо за внимание!

$$Ri_{t}Fr_{t}=1$$

$$Ri_t = \frac{gH\sqrt{\langle T'T'\rangle}}{TU^2}, Fr_t = \frac{U^2}{gb}, H = \sqrt{\frac{gL}{f^2}}$$