

Исследование реакции ¹¹В(р,α)αα

Шуклина Анна, 4 курс КФУ ФФ НГУ Научный руководитель: Соколова Евгения Олеговна ИЯФ им.Г.И.Будкера СО РАН

Зимняя школа по физике высоких плотностей энергии, 2024

о Цель:

Получение новых знаний и *уточнение* имеющихся данных о протекании, сечении и угловом распределении перспективной реакции ¹¹B(p,α)αα в диапазоне энергий протонов 0,15 – 2,2 МэВ

о Задачи:

- О Облучить *толстую* борсодержащую мишень протонами
- Облучить *тонкую* борную мишени под разными углами пучком протонов 0,1 2,15 МэВ
- Провести анализ полученных спектров и построить зависимость сечения реакции от энергии налетающих протонов

- О Рассмотрение реакции для повышения эффективности бор-протонной терапии рака
- о Безнейтронная реакция для термоядерной энергетики

о Анализ структуры материалов и ядерная астрофизика

Проблема: разрозненность накопившихся данных о сечении рассеяния

Дифференциальное сечение рассеяния, мб/ср

Рис.1 Данные о сечении реакции 11 B(p, α_0)⁸Be из базы данных ядерных реакций IBANDL

4

Ускоритель-тандем с вакуумной изоляцией

Рис. 2 Схема экспериментальной установки: 1 – источник ионов, 2 - ускоритель-тандем с вакуумной изоляцией, 3 - аргоновая мишень, 4 – охлаждаемый коллиматор с апертурой 1 мм, 5 – поворотный магнит, 6 – мишенный узел, 7 – видеокамера, 8 – борсодержащая мишень, 9 - α-спектрометр

- Чувствительная площадь детектора $S = 20 \text{ мм}^2$
- о Энергетическое разрешение 13 кэВ
- \circ Емкость 30 пФ
- о Энергетический эквивалент шума 7 кэВ
- Толщина входного окна 0,08 мкм
- Типичный собственный фон в диапазоне 3-8 МэВ – 0,15 имп/см²ч

Рис. 3 Фото α-спектрометра

Рис.4 а) Пластина из карбида бора В₄С толщиной 4 мм на медной подложке; б) 1 мкм бора, напыленного на медную подложку

Рис.5 Устройство мишени: 1 - мишенный узел, 2 - медная подложка, 3 – борсодержащая пластина

Геометрия эксперимента и параметры измерений

Табл. 1 Параметры измерений

	Толстая мишень	Тонкая мишень	Тонкая мишень
φ	135°	135°	168°
Расстояние до мишени, мм	870	717	707
Телесный угол, ср	2,64.10-5	3,89·10 ⁻⁵	4·10 ⁻⁵
Время набора статистики, мин	10	120	120
Мертвое время, менее	0,04	0,05	0,05
Ток на мишени, мкА, менее	1,5	4,6	4,6

Рис. 6 Фото мишенного узла: 1 - α-спектрометр,
2 - мишень, 3 - видеокамера, красной стрелкой обозначено направление пучка протонов

$$^{11}_{5}B + p \rightarrow ?$$

$^{11}_{5}B + p \rightarrow \alpha + \alpha + \alpha?$

$$^{11}_{5}B + p \rightarrow ? \rightarrow \alpha + \alpha + \alpha$$

$$^{11}B + p \rightarrow ^{12}C \rightarrow \alpha + \alpha + \alpha + 8,681 \text{ M}3B$$

 ${}^{11}B + p \rightarrow {}^{12}C \rightarrow \alpha_0 + {}^{8}Be + 8,587 \text{ M}3B, {}^{8}Be \rightarrow \alpha_{01} + \alpha_{02} + 0,094 \text{ M}3B$

 ${}^{11}B + p \rightarrow {}^{12}C \rightarrow \alpha_1 + {}^{8}Be^* + 5,557 \text{ M} \Rightarrow B, {}^{8}Be^* \rightarrow \alpha_{11} + \alpha_{12} + 3,124 \text{ M} \Rightarrow B$

Спектры α-частиц и обратно отраженных протонов: толстая мишень, 135°

Рис.7 Спектры α-частиц и обратно отраженных протонов

Рис.8 Схема реакции бор-протонного синтеза

Спектры α-частиц и обратно отраженных протонов

13

Рис.9 Результат численного моделирования и экспериментальные данные при 1000 кэВ

Спектры α-частиц и обратно отраженных протонов: тонкая борная мишень, 135°

$$\frac{d\sigma}{d\Omega} = \frac{eY}{Nknl\Phi}$$

- е заряд электрона
- Ү выход альфа частиц
- N количество задетектированных альфа-частиц
- k эффективность регистрации альфа-частиц спектрометром
- n плотность частиц
- 1 толщина мишени
- $\Phi-$ интеграл тока
- θ угол детектирования частиц
- Q энергетический выход реакции

$$\left(\frac{d\sigma}{d\Omega}\right)_{c.m.} = G \cdot \frac{d\sigma}{d\Omega},$$

$$G = \frac{|1 + \beta \cos \theta|}{(1 + \beta^2 + 2\cos \theta)^{\frac{3}{2}}}$$

$$\beta = \sqrt{\frac{m_p m_\alpha}{m_B m_{Be}}} \frac{T_M}{T_M + Q}$$

$$T_M = E_p \frac{m_{Be}}{m_p + m_{Be}}$$

Ионизационные потери и коэффициент перехода в систему центра масс

Энергия, кэВ	dE/dx, кэB/мкм	dE, кэB	G
150	107.4	74.106	1.0064
200	94.71	65.3499	1.0085
300	76.6	52.854	1.0127
400	64.81	44.7189	1.0168
500	56.56	39.0264	1.0208
600	50.43	34.7967	1.0248
700	45.69	31.5261	1.0288
800	41.9	28.911	1.0326
900	38.79	26.7651	1.0365
1000	36.19	24.9711	1.0403
1100	34.23	23.6187	1.044
1200	32.31	22.2939	1.0477
1300	30.63	21.1347	1.0513
1400	29.16	20.1204	1.0549
1500	27.84	19.2096	1.0584
1600	26.64	18.3816	1.0619
1700	25.56	17.6364	1.0654
1800	24.56	16.9464	1.0688
1900	23.69	16.3461	1.0721
2000	22.81	15.7389	1.0754
2100	22.07	15.2283	1.0787
2200	21.33	14.7177	1.0819

α0 реакция

α1 реакция

Рис.10 Спектры α-частиц и обратно отраженных протонов

Дифференциальное сечение, мб/ср

Рис.11 α₀-канал реакции

Рис.12 а₁-канал реакции

Заключение

- ✓ Реакция ¹¹В(р,α)аа имеет два канала: ¹¹В(р,а₁)⁸Ве* и ¹¹В(р,а₀)⁸Ве с различными сечениями, что соотносится с современными представлениями
- ✓ Был установлен точный состав исследуемой мишени с помощью SIMNRA version 7.03
- ✓ Измерено дифференциальное сечение каждого канала под углами 135° и 168° при энергии протонов 0,15-2,2 МэВ

Исследование реакции ${}^{11}B(p,\alpha)\alpha\alpha$

Саров, Россия

Study of the reaction ${}^{11}B(p,\alpha)\alpha\alpha$ in the 0.3-2.15 MeV proton beam energy range Сентябрь 2023 **Russian Particle Accelerator Conference 2023** Новосибирск, Россия Ноябрь 2023 Study of the reaction ${}^{11}B(p,\alpha)\alpha\alpha$ in the 0.3-2.15 MeV proton beam energy range 5th All-Russian School of Young Scientists on BNCT Новосибирск, Россия Октябрь 2023 Исследование перспективной реакции ${}^{11}B(p,\alpha)\alpha\alpha$ для протонной терапии и других приложений Диплом за лучший доклад на постерной секции в категории «Бакалавры» II Международной научной конференции и V Международной молодёжной школы «Инновационные ядерно-физические методы высокотехнологичной медицины» Москва, Россия

Исследование реакции ¹¹*B*(*p*,*α*)*αα* **Диплом победителя** Всероссийский студенческий физико-математический конкурс-школа им. И. Е. Тамма Саров, Россия

Вторая Всероссийская школа-семинар НЦФМ по Физике Высоких Энергий и Ускорительной Технике

Январь 2024

Июль 2023

Приложение 1. Толстая борсодержащая мишень

Рис.9 Результаты численного моделирования в программе SRIM-2013.00 Протоны с энергией 2050 кэВ тормозятся уже на 45 мкм

Приложение 1. Толстая борсодержащая мишень

Рис.9 Результаты численного моделирования в программе SIMNRA при энергии протонов 1000 кэВ

Актуальность. Протонная терапия

Рис.2 Кривая глубины проникновения для протонной терапии в сравнении со стандартной лучевой терапией, пик Брэгга

Актуальность. Протонная терапия

Cirrone, G. et al. (2018). *First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness. Scientific Reports, 8(1)*

Рис.3 Кривая выживаемости раковых клеток для протонной терапии с использованием бора в сравнении со стандартной лучевой терапией

○ Мировые запасы бора > 1 млрд тонн ▲

- ⊙ Энергия от 1 гр смеси «водород+бор» ≈ энергии от сгорания 3 тонн
 угля
- о Обеспечение мирового потребления энергии на 1 млн лет 🛛 👍
- о Отсутствие радиации при производстве энергии 🦽
- о «Безнейтронная» ядерная реакция
- Альфа-частицы имеют положительный заряд прямое