Оптимизация параметров мишенной плазмы на установке КОТ

Константин Колесниченко

Новосибирский государственный университет Институт ядерной физики им. Г.И. Будкера Новосибирск, 2022

Диамагнитное удержание

- Одним из перспективных путей создания термоядерного реактора является открытые ловушки
- Основная проблема большие продольные потери
- Решение диамагнитное удержание (или FRC)

Khristo M. S., Beklemishev A. D. Two-dimensional MHD equilibria of diamagnetic bubble in gas-dynamic trap //Plasma Physics and Controlled Fusion. – 2022. – T. 64. – №. 9. – C. 095019.

Установка КОТ

Конец 2021 года – пуск в ИЯФ новой экспериментальной установки КОТ (компактный ocecимметричный тороид или CAT - Compact Axisymmetric Toroid)

Цели исследований:

- изучение удержания плазмы с β=8πpB⁻²~1;
- демонстрация диамагнитного удержания;
- демонстрация возможного обращения поля.

Преимущества конструкции:

- Сравнительная простота
- Высокое значение β
- Наличие естественного канала удаления примесей и продуктов термоядерных реакций

Принципиальная схема конфигурации с обращенным полем

Установка КОТ

Габариты установки

Длина	6 м
Высота	5 м
Диаметр камеры	1 M
Межпробочное	0,6 м
расстояние	
Пробочное	2
отношение	

Мишенная плазма

Радиус	10 см
Плотность	Зх10 ¹³ см ⁻³
Электронная	30-50 эВ
температура	

Система атомарной инжекции

2 инжектора на энергию 15 кэВ		
Мощность	2х2 МВт	
Ток	2х160 экв. А	
Плотность тока в	3,5 (1,6) экв. А/см²	
плазме (2XIIB)		

Температура начальной плазмы

Временная зависимость вытесненного магнитного поля в зависимости от (а) плотности и (б) температуры

Yu.A. Tsidulko, I.S. Chernoshtanov, AIP Conference Proceedings, 1771, 040005, (2016)

Результаты АМБАЛ-М

 Возникающая потенциальная яма ослабляет теплообмен между холодными T_e=10 эВ электронами вблизи пушки и теплыми T_e= 50 эВ электронами в ловушке, которые получают энергию от T_i=200 эВ ионов.

Ахметов Т. Д. и др. Создание горячей стартовой плазмы в концевой системе АМБАЛ-М //Физика плазмы. — 1997. — Т. 23. — №. 11. — С. 988-1001.

Создание предварительной плазмы

Фотография газоразрядного источника на установке КОТ

На установке КОТ мишенная плазма создается при помощи газоразрядного источника, который имеет разрядный канал с кольцевой конфигурацией

Разрядный канал шириной 1 см, внутренний диаметр 11 см

Принципиальная схема газоразрядного источника

Магнитная система установки

Результаты: электронная температура и плотность

Зависимость электронной температуры (а) и плотности (б) от времени

Профиль электронной температуры

(а) и временных координатах(б).

Заключение

В конце 2021 года произведен физический пуск установки КОТ и получена мишенная плазма.

При помощи тройных ленгмюровских зондов были измерены радиальные профили электронной температуры и плотности мишенной плазмы, полученной при помощи газоразрядного источника. Параметры плазмы удовлетворяет условиям требуемым для эффективного захвата и удержания быстрых атомов (T_e > 30 эB, n_e ≈ 10¹³ см⁻³);

В ближайшее время планируется включение системы атомарной инжекции и проведение экспериментов по накоплению азимутального тока.