КИНЕТИКА ЗАТУХАНИЯ ЛЮМИНЕСЦЕНЦИИ И СВЕТОИНДУЦИРОВАННОГО ПОГЛОЩЕНИЯ КРИСТАЛЛА НИОБАТА ЛИТИЯ, ЛЕГИРОВАННОГО МАГНИЕМ

Вопиловский Алексей, ИХКГ СО РАН, лаб. ТХ Научный руководитель – Федоренко С. Г.

План

- 1. Зонная структура ниобата лития, легированного магнием
- Актуальная картина экспериментальных данных по люминесценции и поглощению, их механизмы
- 3. Методы расчёта кинетики
- 4. Анализ результатов аппроксимации
- 5. Заключение

Зонная структура ниобата лития, легированного магнием LiNbO₃ :Mg 6.5 mol%

 E_i

$$w_{fi}(T,r) = w_{fi}(T) \exp\left(-\frac{2r}{L_{fi}}\right)$$
$$w_{fi}(T) = \frac{1}{2} \left(\frac{\pi}{kT\lambda_{fi}}\right)^{1/2} \frac{I_{fi}^2}{\hbar} \exp\left(-\frac{U_{fi}}{kT}\right)$$

$$E_{opt} = 2E_i$$
$$U_{FF} = E_i/2$$
$$U_{FF} = E_{opt}/4$$

3

- эффективный радиус туннелирования

- энергия упругой деформации решётки

 $\lambda_{fi} = E_i + E_f$ - энергия реорганизации Маркуса

 $U_{fi} = \frac{E_i^2}{(E_i + E_f)}$ - энергия прыжкового барьера

$$\frac{\partial u_{fi}}{\partial \lambda_{fi}} \int \frac{\partial u_{fi}}{\hbar} \exp\left(-\frac{\partial u_{fi}}{kT}\right) \qquad U_{FF} =$$

начальным и конечным состоянием

- амплитуда резонансного интеграла между

$$\left(\frac{U_{fi}}{kT}\right)$$
 $U_{FF} = E_{op}$

Фотоиндуцированное поглощение (ТА)

Фотоиндуцированное поглощение (ТА)

Фотоиндуцированная люминесценция на 2.6 эВ (PL)

Расчёт константы скорости туннельного переноса частицы І. Квазистатическое приближение

<u>Низкие температуры</u> $D(T) \rightarrow 0$

Начальная стадия кинетики – статическое тушение, заключительная – пропорциональная D(T) нестационарная стадия

$$\int_{0}^{t} k(t') dt' = \int_{R}^{\infty} \left(1 - \exp\left(-w(r)t\right)\right) d^{3}r + \frac{Dt^{3}}{6} \int_{R}^{\infty} \left(\frac{dw(r)}{dr}\right)^{2} \exp\left(-w(r)t\right) d^{3}r$$

$$w(r) = w(T) \exp\left(-\frac{2r}{l}\right) \qquad \tau = w_T t \quad x_0 = \frac{2R}{l} \qquad \tau >> 1:$$

$$\int_{0}^{t} k(t')dt' = \frac{\pi l^{3}}{6} \left(\left(\ln \tau e^{\gamma} \right)^{3} + 3\left(\ln \tau e^{\gamma} \right) \frac{\pi^{2}}{6} + 2\zeta(3) - x_{0}^{3} \right) + \frac{\pi D l \tau}{3w_{T}} \left(\left(\ln \tau e^{\gamma - 1} \right)^{2} + \left(\frac{\pi^{2}}{6} - 1 \right) \right)$$

Расчёт константы скорости туннельного переноса частицы II. Диффузионно-ускоренная кинетика

Квазистационарный режим реакции, выход на него происходит быстро при больших коэффициентах диффузии D

$$\int_{0}^{t} k(t')dt' = 4\pi DR_{Q}t + 8\sqrt{\pi Dt}R_{Q}^{2}$$

Эффективный радиус при экспоненциальной вероятности

$$w(r) = w(T) \exp\left(-\frac{2r}{l}\right)$$

$$R_{Q} = R + l\left(\gamma + \ln\frac{y_{0}}{2}\right) + l\frac{K_{0}(y_{0}) - y_{0}\frac{R}{l}K_{1}(y_{0})}{I_{0}(y_{0}) + \frac{R}{l}y_{0}I_{1}(y_{0})} \quad y_{0} = l\sqrt{\frac{w_{T}}{D}}\exp\left(-\frac{R}{l}\right)$$

Результаты аппроксимации (PL)

Результаты аппроксимации (PL)

Температурная зависимость коэффициента диффузии свободных экситонов Температурная зависимость предэкспонента обменной вероятности тушения свободных экситонов на ловушках

12

Результаты аппроксимации (PL)

Температурная зависимость эффективного радиуса туннелирования обменной вероятности тушения свободных экситонов на ловушках

$$w(r) = w_T \exp\left(-\frac{2r}{l}\right)$$

На относительно высоких температурах эффективный радиус туннелирования примерно постоянен:

 $l = 2.18 \pm 0.16, A$

Заключение

Предварительные выводы

- 1. Механизмы реакций корректны
- При повышении температуры прослеживается изменение кинетики от статической к диффузионно-ускоренной
- Определение микроскопических параметров путём постадийной аппроксимации кинетических данных возможно с достаточной точностью

Дальнейшие исследования

- Обработка реальных экспериментальных данных
- 2. PL при низких температурах
- Полное решение парной задачи для аппроксимации на всем временном диапазоне
- 4. Определение полного набора
 микроскопических параметров
 ТА и PL

Литература

- 1. Данные по TA: Messerschmidt S. et al. The role of self-trapped excitons in polaronic recombination processes in lithium niobate //Journal of Physics: Condensed Matter. 2018. T. 31. №. 6. С. 065701.
- Данные по PL: Krampf A., Messerschmidt S., Imlau M. Superposed picosecond luminescence kinetics in lithium niobate revealed by means of broadband fs-fluorescence upconversion spectroscopy //Scientific Reports. – 2020. – T. 10. – №. 1. – C. 11397.
- 3. КМ расчёты экситонов и дырочных поляронов: Schmidt F. et al. A Density-Functional Theory Study of Hole and Defect-Bound Exciton Polarons in Lithium Niobate //Crystals. – 2022. – Т. 12. – №. 11. – С. 1586.

Спасибо за внимание!