ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СТРАТИФИКАЦИИ И ГОРЕНИЯ СТРАТИФИЦИРОВАННЫХ ВОДОРОДНО-ВОЗДУШНЫХ СМЕСЕЙ В ВЕРТИКАЛЬНО ОРИЕНТИРОВАННОМ ЗАМКНУТОМ КАНАЛЕ

С. А. Яковлев, В. В. Стаханов, Е. В. Безгодов, А. А. Тараканов, С. Д. Пасюков, М. В. Никифоров, И. А. Попов

ФГУП «РФЯЦ – ВНИИТФ им. академ. Е. И. Забабахина», Снежинск, Россия

В настоящее время наблюдается рост интереса к водородной энергетике, поскольку использование водорода в качестве средства аккумуляции и источника энергии позволяет уменьшить количество выбросов парниковых газов в атмосферу.

Водород обладает наибольшим коэффициентом диффузии и наименьшей энергией воспламенения, а смесь водорода с воздухом воспламеняема в широком концентрационном диапазоне изменения горючего, поэтому при его использовании к безопасности объектов инфраструктуры предъявляются повышенные требования по сравнению с использованием углеводородов [1].

Аварийной ситуации с горением водородно-воздушной смеси предшествует утечка водорода. В случае истечения водорода вблизи поверхности земли может образоваться водородно-воздушная смесь с «отрицательным» градиентом концентрации, направленным против силы Архимеда. Вероятность образования и воспламенения градиентных смесей в ходе протекания аварийной ситуации значительно выше, чем равномерно перемешанных [2]. В свою очередь, наличие градиента концентрации может оказывать усиливающее влияние на процесс ускорения пламени [3]. Оценка воздействия при горении осуществляется с помощью валидированных расчетных кодов.

Исследования горения стратифицированных водородно-воздушных смесей проводилось на вертикально ориентированной установке БМ-К, представляющей собой закрытый канал квадратного сечения 0.6×0.6 м и высотой 12 м [3].

Целью данной работы являлось получение экспериментальных данных по стратификации и горению стратифицированных водородно-воздушных смесей с «отрицательным» градиентом концентрации водорода для валидации расчетных кодов.

Начальные условия и результаты экспериментов по стратификации (эксп. 1–4) и горению стратифицированных водородно-воздушных смесей (эксп. 5–13) представлены в табл. 1. Градиентные смеси характеризовались степенью неоднородности γ , определяемой как отношение максимальной объемной доли водорода C_{max} к средней \overline{C} .

Таблица 1 Начальные условия и результаты экспериментов

№	P_0 , кПа	$\overline{\overline{C}}$, %*	P_1 , к Π а	t_f , c	γ	ΔP , к Π а	$u_{\rm max}$, m/c
1	79,9±0,2	20,9±0,3	101,0±0,3	900	_	_	_
2	80,0±0,2	20,7±0,3	100,8±0,3	900	_	_	_
3	$70,0\pm0,2$	31,3±0,3	101,6±0,3	900	_	_	_
4	$70,0\pm0,2$	31,4±0,3	101,7±0,3	900	_	_	_
5	80,0±0,2	20,5	100,6±0,3	170	1,5	521±13	286
6	79,8±0,2	21,5	101,7±0,3	170	1,5	540±13	318
7	80,0±0,2	21,5	101,9±0,3	170	1,5	538±13	280
8	80,0±0,2	21,2	101,5±0,3	100	2,0	669±13	489
9	80,0±0,2	21,0	101,3±0,3	100	2,0	449±13	282
10	80,1±0,2	21,3	101,8±0,3	100	2,0	521±13	313
11	$70,0\pm0,2$	31,7	102,5±0,3	150	1,5	660±13	182
12	70,0±0,2	31,5	102,2±0,3	150	1,5	547±13	172
13	70,0±0,2	30,6	100,9±0,3	150	1,5	550±13	169

^{* –} в экспериментах без инициирования горения определяется по показаниям датчиков водорода, в экспериментах с горением – манометрическим методом по датчику давления

Изначально в установке находился атмосферный воздух под давлением P_0 . В объем канала через три входа, расположенных на нижней крышке, подавался водород с суммарным расходом 10 л/с до достижения давления смеси P_1 . После подачи водорода смесь выдерживалась в течение некоторого времени t_f (с момента подачи) и поджигалась снизу искровым разрядом с энергией 20 мДж.

По результатам экспериментов были получены распределения объемной доли водорода на разные моменты времени (рис. 1), максимальные скорость фронта пламени и пиковое избыточное давление (рис. 2) в экспериментах с горением. На рис. 2 также представлены результаты, полученные в работах, проведенных ранее [4].

Определено, что в стехиометрических и богатых водородно-воздушных смесях наличие градиента снижает способность пламени к его ускорению.

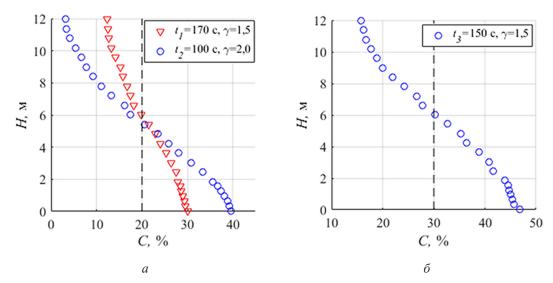


Рис. 1. Распределение объемной доли водорода на разные моменты времени в экспериментах с горением с (a) $\overline{C}=20$ %, (\overline{o}) $\overline{C}=30$ %

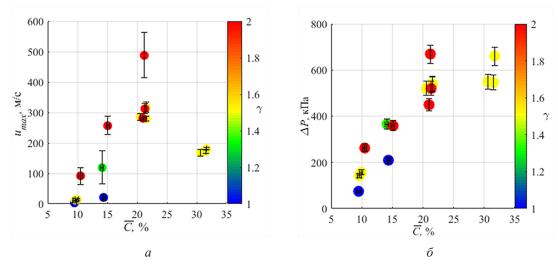


Рис. 2. Максимальные (a) скорость фронта пламени и (δ) пиковое избыточное давление в экспериментах с горением

Литература

- 1. **Гельфанд, Б. Е.** Термодинамика горения и взрыва водорода [Текст]. Санкт-Петербург : Изд-во Политехн. Ун-та, 2009.
- 2. **Vollmer, K. G.** Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient [Text] / K. Vollmer, F. Ettner, T. Sattelmayer // Comb. Sci. Tech. 2012. Vol. 184. P. 1903–1915,

- 3. **Yakovlev S. A.** Experimental studies of combustion processes of stratified and uniform hydrogen-air mixtures [Text] / Yakovlev S.A., Bezgodov E.V., Stakhanov V.V. // Atomic Energy. 2023 Vol. 134, No. 5–6. P. 380–385. Doi: 10.1007/s10512-024-01069-9 2023.
- 4. **Яковлев, С. А.** Экспериментальное исследование горения водородно-воздушных смесей с обратным градиентом концентрации [Текст] / С. А. Яковлев, В. В. Стаханов, Е. В. Безгодов // Тезисы XVII Всероссийского симпозиума по горению и взрыву. -2024-C. 108-110.