ИЗГОТОВЛЕНИЕ ЛАЗЕРНЫХ МИШЕНЕЙ НА ОСНОВЕ НИЗКОПЛОТНОЙ (10 мг/см³) УГЛЕРОДНОЙ ПЕНЫ

Е. М. Писарев, Н. А. Пхайко, С. А. Лекомцев

ФГУП «РФЯЦ – ВНИИТФ им. академ. Е. И. Забабахина», Снежинск, Россия

В лазерных экспериментах используются двухслойные мишени, представляющие собой массивную вольфрамовую подложку с нанесенным на одну из ее сторон слоем низкоплотного (от 10 до $100~\text{мг/cm}^3$) покрытия. Структура данного покрытия должна быть однородной, с размерами пор значительно меньше диаметра фокусного пятна лазера. Конструкция мишени представлена на рис. 1.

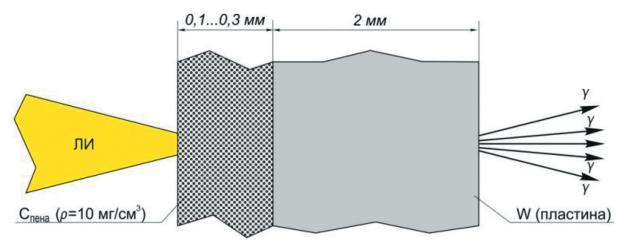


Рис. 1. Конструкция лазерной мишени

В работе представлена экспериментальная отработка простого способа изготовления низкоплотного углеродного покрытия на основе дегидрогенизации органического материала (парафина). На рис. 2 представлена схема циклического нанесения такого покрытия на вольфрамовую подложку, а в таблице 1 его характеристики.

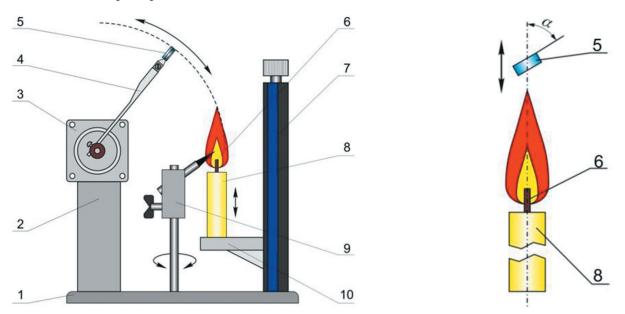


Рис. 2. Схема нанесения низкоплотного углеродного покрытия в полуавтоматическом режиме: I – основание; 2 – стойка шагового двигателя; 3 – шаговый двигатель; 4 – держатель образца; 5 – образец; 6 – фитиль; 7 – подъемный механизм; 8 – свеча; 9 – поворотный указатель; 10 – держатель свечи

№	Экспозиция, с	Угол α, град	Количество циклов	Толщина, мкм	ρ, мг/см ³
2	0,5	90	45	100±10	117±12
4	2	90	45	130±10	94±7
5	3	90	45	100±10	180±20
6	0	45	135	140±10	10±7
7	0	45	180	190±10	10±1
8	0	45	270	290±10	9±1

Характеристики низкоплотных покрытий

Исследования проведенные на растровом электронном микроскопе (рис. 3, a) показали, что данный материал представляет собой пористую структуру с размером пор 250 \div 500 нм, стенки которых состоят из фуллеренов диаметром 60 \div 80 нм. На рис. 3, δ представлен вид готовой лазерной мишени.

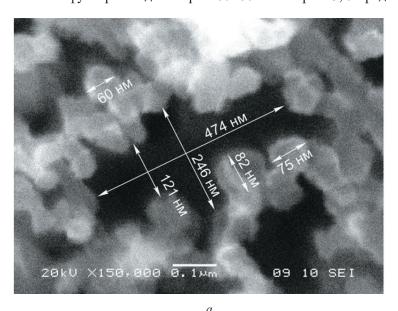


Рис. 3. Электронномикроскопическое изображение поверхности покрытия (a) и внешний вид готовой лазерной мишени (δ)

Литература

- 1. **Rigon, G.** Reyleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remants [Text] / G. Rigon, A. Casner, B. Albertazzi, Th. Michel. // Phys. Review E. 2019. Vol. 100. P. 021201 (R).
- 2. **Березкин, В. И.** Углерод: замкнутые наночастицы, микроструктуры, материалы [Текст]. СПб : Изд-во «АртЭго», 2013. 450 с.
- 3. **Botero, M.** Internal structure of soot particles in a diffusion flame [Text] / M. Botero, Y. Sheng, J. Akroyd, J. Martin // Preprint Cambridge Centre for Computational Chemical Engineering. 2018. DOI: 0.1016/j.carbon.2018.09.063.