ИССЛЕДОВАНИЕ ПОРОШКА АЛЮМИНИЯ С УЛУЧШЕННЫМИ РЕАКЦИОННЫМИ СВОЙСТВАМИ

А. Д. Черменин¹, Д. М. Гагаркин¹, О. В. Фролова¹, К. Н. Беркутова¹, И. В. Чемагина¹, Н. А. Алехина¹, А. Х. Рудина¹, К. М. Просвирнин¹, А. В. Сарафанников¹, К. В. Ковалева¹, В. Г. Шевченко²

¹ФГУП «РФЯЦ – ВНИИТФ им. академ. Е. И. Забабахина», Снежинск, Россия ²ФГБУ науки «ИХТТ» Уральского Отделения РАН, Екатеринбург, Россия

Известно, что использование дисперсных металлов в качестве горючего во взрывчатых составах обеспечивает повышение средней плотности данной композиции, а также увеличение теплоты взрыва из-за высокой энтальпии образования оксида алюминия. Теплота сгорания металла служит мерой эффективности использования металла в смесевых составах.

Наряду с теплотой сгорания существенное влияние оказывает устойчивость оксидов металлов к диссоциации, теплоты и температуры фазовых превращений в самом металле и оксидной пленке на поверхности частиц порошков. При выборе металла необходимо учитывать химическую совместимость его с другими компонентами взрывчатого состава, наличие сырьевой базы, стоимость. По этим показателям, в настоящее время, алюминий является наиболее предпочтительным металлическим горючим.

В работе представлены результаты исследования модифицированного алюминия, с целью повышения полноты и скорости его окисления, а также понижения температура начала окисления.