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Partial differential equation (PDE) solving

Scientific Machine Learning

Difficults in traditional numerical methods：
➢ Mesh generation
➢ Curse of dimensionality：1.complexity increases 

exponentially 2. Lack of high - dimensional theory
➢ Data combination：The equations contain 

undetermined  parameters
➢ Data compression：The complex flow field data 

has a large storage volume
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Use machine learning methods to solve difficult 
problems in scientific computing



Initial and boundary conditions

Solving conservative convection PDEs:
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Physics - Informed Neural Networks (PINNs)

Raissi, Yazdani & Karniadakis,  JCP, 2019

ℒ =  �� − ��0 ICs +  �� − ��0 BDs +  � PDE



Equation stepping solving： Constrained optimization 
problem

U.A.T

PINNs compared with traditional methods:

Local → Global 
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6Global  →  Local

Loss Function



● Mesh - free and particle  - free

● Scheme Free

● Directly solve the initial and boundary 

value problems (forward problems)

● Easy to solve the data combination 

problems (inverse problems)

● Alleviate the curse of dimensionality

● compression is completed during training

● *Discontinuous solution has the potential 

for higher resolution*

Advantages of PINNs
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Loss Function

Z. Cai, et.al.,  JCP, 2021, Li Liu, et,al., JSC 2024



Advantages of discontinuous solution
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Universal approximation theorem (Hornik et al., 1989; Cybenko, 1989): 
A feed - forward neural network with a linear output layer and at least one hidden layer 
with an activation function having any’squeezing’ property (such as the logistic 
sigmoid activation function) can approximate any Borel measurable function from one 
finite- dimensional space to another finite - dimensional space with arbitrary accuracy as 
long as the network is given a sufficient number of hidden units.

Tanh activation function，Two Neurons

 Michael Nielsen

Tanh activation function，Four Neurons



Smooth problems, linear and weakly discontinuous problems

Vortex convection problem

Linear Convection Combined Wave Problem



2D Interface Problem

Smooth problems, linear and weakly discontinuous problems



Euler Equation 123problem

Smooth problems, linear and weakly discontinuous problems
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Burgers Problem:

Problem Analysis With Strong Discontinuity

� 0,� 
= sin⁡ �� 

��
�� +

� �2/2 
�� = 0
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Eq: IC: BC: � �, 0 = � �, 1 = 0



Epochs

Residual

Prediction of u at time t = 1 for different training epochs of the model 14

PDE Residual

IBcs Residual

←Residual 
difficult to 
reduce

large
Prediction 

error 

A typical discontinuous solution example



Residual distribution at time t=1 for different model training steps
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2.0 6.0 4.5 3.9 Residual 
concentrated 

at the 
'transition 

point'

PINNs Analysis

Residual
PDE Residual

IBcs Residual Epochs



High 
order

Traditional discontinuous 
capturing method：

1. Introduce 
scheme/artificially viscosity 
to suppress large gradients
2.  Reduce the accuracy 
(order) in the Transition 
region
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PINNs：
��

��

���� = �1 + �2

loses control in the 
smooth region，
unless L_1 is 
effectively reduced，

If    �� = � �.�  
and �� < � �.� 
Then  �푷�� = � �.� 
 

PINNs（By Dissipation）：
→Only transition region is sufficiently 
smooth, accuracy can be improved 
→difficult to surpass the traditional 
method 

 Numerical Dissipation & PINNs

New idea:

Eliminate the 

transition point

High 
order



There is a paradoxical state at the transition point
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Analysis at the transition point

2.0

Carry most of the residual: 
Concentrate 
It does not satisfy the strong - 
form PDE

�1

�2
6.0

Increase the gradient: 
Approaching solution, the 
residual increases and the  
the ”direction” is wrong

�1

�2
4.5

Decrease the gradient:
Getting away from the 
solution, the residual 
increases the ”direction” is 
wrong



Decrease the 
gradient：
large gradient 
brings larger 
equation loss

Increase the 
gradient：
shock wave is in a 
physical compression 
state

Confrontation

Reason Analysis and The new Idea

Reason：

Idea： Weaken the neural network’s attention to the transition
point→Eliminate the confrontation

Auto-
Compress

Attention

18

Attention

Auto-
Compress



Weaken the neural network’s attention
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➢ The attention mechanism is 
a biological mechanism

➢ There are two methods to 
adjust the network 
attention in PINNs:

    1. Adjust the sampling ×

    2.Adjust the weight √



PINNs-WE
Weighted equation method (WE)
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Compress:   � → 0
Other Regions:    � → 1
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ℒ =  �� − ��0 ICs +  �� − ��0 BDs +  �new PDE

�new ≔ � 
��
�� + � ⋅ � 

� =
1

�2  � ⋅ � − � ⋅ � + 1
�2 = 0.1where：

von Neumann artificial viscosity
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PINNs-WE
Weighted equation method (WE)



Epochs

Total 
Loss
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原PINNs

PINNs-WE

The new method can effectively reduce 
the total residual.

Weighted equation method (WE)



Residual 
Distribution

 u

 1000 Epochs 3000 Epochs 8000 Epochs 11500 Epochs

The new method can effectively 
eliminate transition points and reduce 

the function prediction error

6.0
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45.0 3.0 0.02

Weighted equation method (WE)



Sod Problem

Original PINNs PINNs -WE
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➢ Although it converges to a discontinuous solution, the random 
perturbation is large and the under - determination is severe



PDE：
��
�� + � ⋅ � = � Nonlinear 

Discontinuity

Math. Phys. NN

Hard to 
Convergence

Method

Equation 
Weight
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Lack of reasonable 
discontinuity constraints

ill - posed multiple 
solutions

weak solutions: 
local and global
conservation constraints
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PDE：
��
�� + � ⋅ � = � Nonlinear 

Discontinuity

Math. Phys. NN

Hard to 
Convergence

Method

Equation 
Weight





Flow Conservation Constraint
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2D Euler equations RH 
Condition：

� ∙ [[�]] = [[�]]

Aerodynamic relations:：

�� = � − �0 → 0
�� = � − �0 → 0
�� = � − �0 → 0

Under 
differentiability, 
the Rankine-
Hugoniot 
conditions can be 
transformed into 
rarefaction wave 
conditions.

Limiter 2：



Global Conservation Constraints

29

Global Conservation：

Approximation：



Sampling space
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PINNs-WEWENO-Z

➢ Network setting: 5 layers with 50 neurons
➢ Training residual points: X∗ T = 100∗100
➢ Test points: Based on a grid of 100
➢ Comparison methods:  5th-WENO-Z, 3rd-RK-scheme, and characteristic 

reconstruction
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Sod Problem



PINNs-WE WENO-Z

Lax Problem
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Without introducing numerical dissipation → , the shock 

wave can be captured more clearly



Double shock wave problem
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Accurate simulation can also be achieved for 
stronger shock waves



Residual points: T∗X
∗Y = 100000 Latin hypercube sampling,
About 50 points per dimension
Test: Grid-based 100*100
WENO-Z: X*Y = 100*100

Two-dimensional Riemann problem

Density，PINNs-
WE

36

Density，WENO-Z

Less data, clearer discontinuities



U V

PINNs-WE

WENO-
Z
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Two-dimensional Riemann problem

Less data, clearer discontinuities



Comparison 2

PINNs-WE

WENO-Z
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Residual points: T*X*Y = 100000 Latin hypercube sampling, about 50 
points per dimension
Test: Grid-based 400*400 WENO-Z: X*Y = 400*400

 With 
insufficient 
data, large 

structures can 
be clearly 

solved, super-
convergence

VUDensity



Transonic flow around a circular cylinder example

            Ma=0.72  Transonic problem with shock waves

• Computational domain：� ∈ [0,0.4],� ∈ [0,1.5],� ∈ [0.2]            
• Network setting：7*90*90  (All space-time: 110,000 data）
• Sampling：300000，Latin hypercube (about 67 per 

dimension)
• IBCs：15000，Latin hypercube
• WENO- Z： 200*200 Mesh（160,000 data points at one time）

39

Data compression
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Density/
Streamlines

WENO-Z PINNs-WE

The flow field structure and density 
distribution are very similar.

Transonic flow around a circular cylinder example
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密度/流线

Pressure

PINNs-WEWENO-Z
The discontinuities are sharper and the flow field is smoother.

Transonic flow around a circular cylinder example
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PINNs-WE WENO-Z

U V
The large structures are similar and the flow field is smoother

PINNs-WE WENO-Z

Transonic flow around a circular cylinder example



Other cases

NACA0012
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Conclusions

• Limited by the 
network’s expressive 
ability and 
optimization methods, 
there is no mesh 
convergence; 

• -The advantages are 
obvious under 
insufficient sampling

44



Partitions/ Meshes

Errors

Traditonal 
Method

PINNs



Disadvantages：
• Efficiency of forward problem 

solving
• Grid convergence
→ Complex problems (high 
frequency, multi - scale)
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Advantages：
• Mesh-Free 
•  Sparse sampling points (for 

high - dimensional problems)
• Sharpness in discontinuities
• Data fusion

Outlook:
• Inverse problem:

• Flow field inversion, 
filling, equation 
parameter calibration, 
equation modeling

• offline
• Localization and New 

framework



Partitions/ Meshes

Errors

Traditonal 
Method

PINNs

DeePoly

DeePoly: A High-Order Accuracy and Efficiency Deep-
Polynomial Framework for Scientific Machine Learning

Recent Work



Machine Error AC equation NS equations

github.com/bfly123/DeePoly

• Meshfree, Schemefree based on Auto-Differential
• High-order Accuracy and Higher efficiency than PINNs
• Fit for Discontinous/Smooth Problem
• Fit for all the PDEs
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