

Новые CAE технологии CADFLO на примерах задач атомной отрасли

Новаковский Геннадий, Т1 Интеграция

ТІ Интеграция

21 мая 2025

Содержание

О программном комплексе CADFLO – 6 мин

- История команды, наши заказчики
- Ключевые технологии

Примеры отраслевых задач - 8 мин

- Анализ перемешивания теплоносителя в реакторе ВВЭР-1000 в условиях аварии
- Тепловые потоки при больших числах Маха
- Баллистика полезной нагрузки после отделения от самолёта
- Детонация
- Тепловая заметность
- Рассеяние плоской электромагнитной волны на объекте

Сертификация CADFLO в НТЦ ЯРБ - 1 мин

Вопросы и ответы - 5 мин

CADFId

О программном комплексе CADFLO История команды, наши заказчики

Свидетельство в Роспатенте № 2022663085

В реестре Российского ПО № 15125

Член АРПП «Отечественный СОФТ»

Российский САЕ, 38 лет в России и за рубежом

CAD**Flo[®] ---**

История команды, наши заказчики

CAD**Flo[®] ---**

Российские пользователи

CADFI

О программном комплексе CADFLO

Ключевые технологии

Свидетельство в Роспатенте № 2022663085

В реестре Российского ПО № 15125

Член АРПП «Отечественный СОФТ»

Особенности традиционных САЕ систем

Решатель и сеточный генератор должны обеспечить нужный результат при заданной геометрии и постановке задачи. Такой подходит требует более сложной технологии и нетривиальных решений, но позволяет переложить сложность решения CFD задачи с плеч пользователя на разработчиков кода.

9

Простая геометрия

Сложная геометрия

Разрешение погранслоя в классических пакетах

CAD**FIo[®] ---**

Простая геометрия

Сложная геометрия

CAD**FIo[®] ---**

Простая геометрия

Сложная геометрия

CAD**Flo[®] ---**

Простая геометрия

Сложная геометрия

Разрешение погранслоя в классических пакетах

14

Решатель дополнен уникальными моделями!

В отличие от традиционных CFD пакетов, инженерный анализ T1 дополняет классичиские методы уникальными моделями, что позволяет получить результат **в десятки раз** быстрее и проще **без потери точности**.

Ключевые три "Тонкие" технологии

Интегральная модель погранслоя: решение уравнений Прандтля вдоль траектории

Эмпирическое решение заменяет численное в особых геометрических ситуациях

Аналитическое решение в твердых телах, разрешенных одной ячейкой поперек

Модель "Тонкого" слоя

Разделение на ядро потока и пограничный слой.

Модели пограничного слоя в CADFlo:

1. "Модель «толстого» пограничного слоя пограничный слой хорошо разрешен сеткой, расчет производится по классической технологии с использованием пристеночных функций.

2. Модель «тонкого» пограничного слоя пограничный слой не разрешен сеткой, расчет напряжения трения и теплового потока производится на основе решения интегральных уравнений Прандтля. Далее полученные потоки используются в расчете ядра подобно технологии пристеночных функций.

Модель "Тонкого" слоя

- + Модель работает для ламинарного, переходного и турбулентного течений.
- + В модели учитывается:
 - кривизна поверхности
 - ламинарно-турбулентный переход
 - сжимаемость
 - диссипация кинетической энергии
 - шероховатость поверхности
 - массовые силы в виде гравитации и центробежных сил
 - течение в точке растекания и отрыв потока.
- + Модель не требует детального разрешения пограничного слоя у стенки.
- В следствии отсутствия требования разрешать сеткой погранслой, возможно получить решения для экстремально сложной геометрии без ее предварительного упрощения.
- Нодель заменяет собой несколько (но не все) моделей турбулентности ввиду своего универсального подхода

Проверка модели пограничного слоя

Модель "Тонкие" каналы

 $\Delta \mathbf{X}$

Модель "Тонкие" стенки

Проверка модели тонких каналов

Уникальные оригинальные решения обеспечивают высокую точность, лучшую производительность и автоматизацию решения.

Решение T1 = 5 минут

Точное и быстрое решение на автоматических настройках

ANSYS Icepak = 180 минут

Долго, решение зависит от выбранной численной модели

Проверка модели тонких каналов

Контур	Твх, °К	Твых, °К	∆T, °K	Твых, °К	∆T, °K	Разница
		ANSYS		CADFlo		
Дымовые газы	1000	508	-492	524	-476	3,25 %
Воздух	300	814	514	796	496	3,51 %
Пар	380	991	611	992	612	0,16 %
Число ячеек, 10 ⁶		15		2		x7
Время счета, ч		25		4		x6

Возможность проведения расчетов инженерами-конструкторами

CAD**Flo[®] ---**

- + Бесшовная интеграция в T-FLEX CAD, КОМПАС-3D, SolidWorks, NX, Creo, Solid Edge, CATIA V5
- + Не требует упрощения геометрии
- + Автоматическое извлечение жидкостного области
- Задание исходных данных и визуализация результатов на модели в окне CAD
- Синхронизация проекта анализа при изменении геометрии CAD
- + UI в стиле CAD, знакомом инженеру-конструктору
- Высокая надежность и степень автоматизация: автоматический контроль сходимости
- Автоматический решатель: нет выбора моделей турбулентности и сложных настроек решателя универсальная "Тонкая" модель заменяет многообразие моделей и упрощает работу с САЕ не специалистам в области инженерного анализа

CADFI

Примеры отраслевых задач

Свидетельство в Роспатенте № 2022663085

В реестре Российского ПО № 15125

Член АРПП «Отечественный СОФТ»

Перемешивание теплоносителя в реакторе в условиях аварии

CADFIo +

Расчетная область, граничные условия

- Расчетная область выделена контуром на чертеже справа
- В нижней камере расположено 163 топливных опорных колонн, соответствующих количеству топливных сборок.
- Перфорированная пластина состоит из 1344 отверстий диаметром 0,04 м.
- ГУ на входе: скорость и температура воды 4-х холодных ветках циркуляционного контура (данные, измеренные в ходе эксперимента на реакторе).

Parameter	Loop 1	Loop 2	Loop 3	Loop 4
Mass flow rate, [kg/s]	4566	4676	4669	4819
Velocity, [m/s]	10,57	10,53	10,50	10,84
Temperature, [K]	555,35	543,05	542,15	542,35

- Более высокая температура в 1-м входном патрубке соответствует имитируемым аварийным условиям.
- Погрешность измерения расхода +/-110 кг/с, температуры +/- 1,5°К [2].

Перемешивание теплоносителя в реакторе в условиях аварии

Температура на входе в активную зону от номера сборки

Распределение температуры в сечении на высоте 2,5 м от днища

Тепловые потоки при больших числах Маха. Заостренный конус*

0.25

0.3

50

0

0.05

0.1

5, m

Параметры потока: M_∞=6.86; T_∞=57 K; P_∞ =<u>363...1145 Ра</u> Температура стенки: Т_w=293.2 К Пограничный слой – ламинарный, переходный, турбулентный Пограничный слой - ламинарный $\theta = 10$ Mach Number 1.0E-02 L=30 cm Ламинарный, переходный, турбулентный п.с. Stanton Numbe 1.0E-02 Ламинарный п.с. Q00000 0 0 60 1.0E-03 1.0E-03 Experimental data -FIOEFD C Experimental data -Laminar boundary layer - theory -FloEFD Turbulent boundary layer- theory 1.0E-04 1.0E-04 10 0 12 0.15 0.2

*Fischer, M.C. An experimental investigation of boundary-layer transition on a 10-deg. half-angle cone at Mach 6.9. Technical Report NASA TN-D-5766, 1970.

S, inch

Тепловые потоки при больших числах Маха. Затупленный конус*

Параметры течения: M_{∞} =5; T_{∞} =115 K; P_{∞} =1650 Pa

Температура стенки: Т_w=293.2 К

^{*} Jackson, M. D., and Baker, D. L. Interim Report - Passive Nosetip Technology (PANT) Program. Volume III. Surface Roughness Effects, Part I. Experimental Data. SAMSO-TR-74-86, Vol. III, Pt. I, U.S. Air Force, Jan. 1974.

Тепловые потоки при больших числах Маха. Скругленный цилиндр* САДГГС 🕂 🕂

$M = 16.34 T = 52 K T_w = 294 K p = 82.95 Pa$

Тепловые потоки при больших числах Маха. Теплозащитный наконечник

+1

Испытания модели проводились на ударной трубе

Параметры набегающего потока: Скорость потока – 5162 м/с Статическое давление в потоке – 1824 Па Статическая температура потока – 1113 К Рабочее тело - воздух

Число ячеек сетки – 2.5 млн

Баллистика тела после отделения от самолёта

- + Условия:
 - Высоте полёта = 8 000 м
 - Масса тела = 907 кг
 - Моменты инерции: Ix = 27.12 кг*м², IY = 488.1 кг*м², Iz = 488.1 кг*м²

+ Анализ:

- Аэродинамика серия стационарных расчётов
- Совместно с CFD решаются уравнения динамики тела по 6 степеням свободы
- Определяется новое положение тела на каждом шаге, CFD-сетка перестраивается.

Перемещение центра масс по времени

∆t=0.01...0.02 s – временной шаг для решения баллистических уравнений

* Thoms, R.D. and Jordan, J.K., "Investigation of Multiple-Body Trajectory Prediction Using Time-Accurate Computational Fluid Dynamics", AIAA Paper 95-1870, June, 1995

Детонация

+ Условия:

- Смесь водорода и воздуха
- 1D и 3D постановки
- Объемная концентрация H₂ = 0,297 (стехиометрия)
- Начальные условия:1 bar, 20 °C
- Сетка равномерная и с адаптацией (дроблением по фронту волны)

+ Анализ:

- Скорость волны и потока газа
- Давление в пике и за фронтом
- Температура
- Требуемый размер ячеек сетки
- Влияния концентрации Н2

t=0.4 ms

Min = 0.999991 bar Max = 20.7912 bar Iteration = 2307 Time = 0.000647589623 s

*А. И. Гавриков, А. Данилин, А. А. Канаев, А. Е. Киселев, МОДЕЛИРОВАНИЕ ДЕТОНАЦИИ В УСТАНОВКАХ КРУПНОГО МАСШТАБА С ПОМОЩЬЮ ПРЕЦИЗИОННОГО ВИХРЕРАЗРЕШАЮЩЕГО КОДА CABARET-COMBUSTION

33

Тепловая заметность

Расчет заметности F16 на высоте 1 км с расстояния 1 км

- + Параметры планера
 - Температура 45°С
 - Коэффициент черноты 0,88
- + Параметры струи двигателя
 - Температура 1000°С
 - Состав СО₂ 9,2%, H₂0 3,6%, сажа 0,008%
- + Диапазон длин волн наблюдения 1,5..3,5 мкм
- Определение излучения на больших расстояниях от объекта
- + Учет влияния газов (Н2О и СО2) и сажи
- + Спектр излучения Н2О и СО2 изменяется от 1 до
 40 мкм и температурном диапазоне 200-4000К
- + Сажа рассматривается как идеальный газ

Интенсивность излучения [Вт/ср]

Рассеяние плоской электромагнитной волны на объекте

- + Полномасштабная модель самолета F-22, идеальный проводник
- + Падающая электромагнитная волна плоская с частотой 200 МГц, 1ГГц, 12ГГц падающая под углом 45° к оси объекта в плоскости планера
- + Сравнение получаемых результатов по возбуждаемым токам и эффективной площади рассеяния (ЭПР) производится с программным аналогом фирмы Dassault Systems CST

Рассеяние плоской электромагнитной волны на объекте

- + Полномасштабная модель самолета F-22, идеальный проводник
- + Падающая электромагнитная волна плоская с частотой 200 МГц, 1ГГц, 12ГГц падающая под углом 45° к оси объекта в плоскости планера
- + Сравнение получаемых результатов по возбуждаемым токам и эффективной площади рассеяния (ЭПР) производится с программным аналогом фирмы Dassault Systems CST

CAD**FIO** Сертификация CADFLO в НТЦ ЯРБ

Работу по верификации кода проводит технологический партнёр – компания "Научный Инжиниринг"

Свидетельство в Роспатенте № 2022663085

В реестре Российского ПО № 15125

Член АРПП «Отечественный СОФТ»

Сертификация в НТЦ ЯРБ

МАТРИЦА ВЕРИФИКАЦИИ:

- 1 Турбулентное течение в канале круглого сечения
 - 1.1 Гладкая труба
 - 1.2 Труба с равномерной шероховатостью

2 Турбулентное течение в канале круглого сечения с гибом 180°

3 Турбулентное течение в канале квадратного сечения с гибом 180°

- 4 Турбулентное течение в переходном канале "круг-прямоугольник"
- 5 Течение в круглом канале с внезапным расширением
- 6 Турбулентное течение с отрывом в несимметричном диффузоре
- 7 Турбулентное течение за обратным уступом
- 8 Взаимодействие струи круглого сечения со стенкой
- 9 Теплопроводность в цилиндрической оболочке с граничными условиями первого рода
- 10 Теплопроводность в цилиндрической оболочке с граничными условиями второго рода
- 11 Теплопроводность в толстостенной цилиндрической оболочке с внутренним источником тепла
- 12 Гидродинамика и теплообмен в потоке натриевого теплоносителя в пучке обогреваемых стержней (эксперимент TEGENA)
- 13 Моделирование гидродинамики и теплообмена в кольцевом зазоре при наличии обогреваемого стержня
- 14 Гидродинамика и теплообмен в пучках стержней с дистанционирующими решетками, омываемого жидкометаллическим теплоносителем
- 15 Гидравлическое сопротивление и массоперенос в модели ТВС с оребренными твэлами

НАУЧНЫЙ

нжиниринг

https://sciengine.ru/

Спасибо за внимание

ТІ Интеграция

21 мая 2025