XVII Международная конференция **«ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ»** Снежинск, Челябинская область, Россия 22 мая 2025 г.

Исследование распространения и деления на отдельные очаги водородно-воздушного пламени в узком зазоре

П. С. Алехнович, <u>В. В. Володин</u>, В. В. Голуб, А. Е. Ельянов

Лаборатория физической газовой динамики

ОИВТ РАН, Москва

Ячейка Хеле-Шоу

Глицерин как более вязкая жидкость

Вода как менее вязкая жидкость

Хеле-Шоу «вязкие пальцы», неустойчивость Саффмана-Тейлора

Неустойчивое горение в плоских зазорах

(a) h = 0.1 mm

распространение пламени в 4% смеси метана с воздухом в плоских зазорах различной толщины: h = 3.0 mm (b), 4.4 mm (c)

Alexeev M.M., Semenov O.Y., Yakush S.E. Experimental study on cellular premixed propane flames in a narrow gap between parallel plates // Combust Sci Technol. 2018.

Шлирен визуализация водородно-воздушного пламени в плоском зазоре

Gu, G., Huang, J., Han, W., Wang, C. Propagation of hydrogen– oxygen flames in Hele Shaw cells // International Journal of Hydrogen Energy. 2021

Распространение ультра-бедных водородновоздушных пламён

Как и почему фронт пламени распадается? Какая форма у отдельных элементов пламени? 🖻

Пальцеобразное пламя

Kuznetsov M. et. al. Unexpected propagation of ultralean hydrogen flames in narrow gaps. 2020

Дрейфующее шарообразное пламя

Kirillov I. et al. Classification and Dynamics of Ultralean Hydrogen–Air Flames in Horizontal Cylindrical Hele–Shaw Cells. 2023 Колпачкообразное пламя

Sereshchenko E. et al Numerical study of sporadic combustion waves in straight channels of different diameters. 2022

Экспериментальная установка

Схема экспериментальной установки

Спектр пропускания стекла КИ

- 4 кварцевое стекло марки КИ,
- 7 пластина для регулировки зазора,

Распространение пламени в смеси с содержанием водорода 10 об.%

10 об.% H₂, 3мм, 370fps, 10 мкс

10 об.% H₂, 5мм, 370fps, 10 мкс

Суперпозиция последовательности кадров

Распознавание фронта пламени

 Определение интенсивности по лучу

15 об.% Н₂, 5 мм, 23 мс

 Вычисление порога бинаризации

3. Бинаризация серии

Распределение интенсивности излучения продуктов сгорания по радиусу

Распознавание фронта пламени на всех кадрах эксперимента

R-t диаграммы распространения фронта пламени и отдельных очагов после распада (10 об.% H₂)

Распространение фронта пламени в смеси с 7 об.% водорода

7 об.% H₂, 4мм, 1200fps, 50 мкс

7 об.% H₂, 5мм, 370fps, 50 мкс

Суперпозиция серии снимков

Распознавание очагов пламени

Масштаб - 0,1234±0.0003 мм/ріх Средний диаметр очага 3 мм Ошибка определяется как среднеквадратичное отклонение при изменении коэффициента бинаризации

значениями порога

Скорость фронта пламени и отдельных очагов после распада (7 об.% Н₂)

12

Шаро- или колпачко- образный очаг?

Сферическое горение возможно только в неподвижной смеси со скоростью дрейфа сферического пламени, не превышающей скорости диффузии водорода.

Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва

Средняя скорость очагов: 0,2-0,3 м/с

Скорость диффузии водорода: 0,02 м/с

Распределение радикала ОН, полученного численным моделированием.

V = 0.45 m/s

V. V. Volodin, V. V. Golub, A. D. Kiverin, K. S. Melnikova, A. Y. Mikushkin u I. S. Yakovenko, Combustion Science and Technology 2021. 13

Механизм распада

Схема распада фронта пламени

L. Berger et. al Flame fingers and interactions of hydrodynamic and thermodiffusive instabilities in laminar lean hydrogen flames // Proc. Combust. Inst. 2023.

Термодиффузионно неустойчивое пламя локально гаснет в вогнутостях распадаясь на отдельные колпачкообразные очаги.

Критерий распада

	Периметр фронта L, м	Скорость участка фронта v, м	Число Пекле Ре	K _{decay}
7 об.% Н ₂ ,	0,013	0,25	122	19,5
4 MM				
7 об.% Н ₂ ,	0 014	02	111	14 2
5 мм	0,011	0,2		
10 об.% Н ₂ ,	0.015	0.36	183	15.2
3 мм	0,010	0,00	100	10,2
10 об.% Н ₂ ,	0 024	0 42	352	17 6
5 мм	0,021	0,12	002	,0

Hydrogen concentration, vol.%

Режимы горения водородо-воздушной смеси с различной концентрацией водорода в зазорах различной толщины

Инфракрасное излучение фронта пламени в большом зазоре

Условия эксперимента:

Концентрация водорода в смеси: 10, 12, 15 об.% Толщина зазора: 3, 5, 7 мм. Давление атмосферное. Температура комнатная.

15 об.% Н₂, 3 мм

15 об.% Н₂, 7 мм

Радиальное распределение интенсивности (в относительных единицах из-за разного времени экспозиции) излучения фронта пламени в один и тот же момент времени для зазоров разной толщины и смеси с содержанием водорода 15 об.%.

Динамика плоского пламени

Параметры	Прирост скорости
V_{7mm}/V_{3mm} , [H_2] = 15%	80%
V_{10mm}/V_{7mm} , $[H_2] = 10\%$	10%
$V_{15\%}/V_{10\%}$, h = 7mm	3 раза
$Sl_{15\%}/Sl_{10\%}$	3 раза

R-t диаграмма для смесей с 10 и 15 об.% в зазорах толщиной 3, 5, 7 мм

Выводы

- В работе получены инфракрасные изображения бедных и ультрабедных пламен, распространяющихся в плоских зазорах. Представлены динамика и механизм распада фронта пламени на отдельные колпачкообразные очаги.
- Предложен критерий распада фронта пламени в плоском зазоре на колпачкообразные очаги, основанный на модифицированном числе Пекле.
- В узких зазорах от 3 до 7 мм увеличение концентрации водорода от 10 до 15 об.% приводит к увеличению скорости фронта пламени до трех раз.

Спасибо за внимание!