

Расчет вязкости жидких металлов с использованием машинно-обученных межатомных потенциалов

П.В. Чирков, Г.С. Ельцов, А.В. Караваев, В.В. Дремов

ФГУП «РФЯЦ-ВНИИТФ им. академ. Е.И. Забабхина» г. Снежинск;

- Коэффициент сдвиговой вязкости определяет число Рейнольдса, которое характеризует турбулентное перемешивание в гидродинамике;
- Другие свойства расплавов в широком диапазоне температур (к-т самодиффузии и т.д.)

Атомистическое моделирование

Квантовые расчеты (DFT + QMD) (построение обучающей выборки)

VASP, Abinit, QE, Exciting

- + высокая точность
- + "отсутствие" подгоночных параметров
- малость систем

Машинное обучение (построение MLIP моделей межатомного взаимодействия)

> GEAM, MTP. GAP, SNAP

- + Достижение в КМД расчете точности DFT
- + Возможность дообучения "на лету"
- ab initio расчет истина?!

Методики крупномасштабного атомистического моделирования (КМД) (моделирование свойств и процессов представительных систем) LAMMPS

- + большие системы
- точность определяется полуэмпирической моделью межатомного взаимодействия

Первопринципные расчеты

	Уран	Плутоний	Платина
Кол-во атомов в суперячейке	128	128	256
Обменно- корреляционный функционал	PBE	PBE	PBEsol
Учет электронных корреляций	DFT+ <i>U</i> U _{eff} =0.6 эВ	DFT+ <i>U</i> U _{eff} =5.0 эВ	-
Кол-во валентных электронов в псевдопотеницале	14	16	16
Е _{cut} , эВ		600	
<i>k</i> -сетка		2×2×2	

$$f_n\left(\frac{\varepsilon_n-\mu}{\sigma}\right) = \frac{1}{\exp((\varepsilon_n-\mu)/\sigma)+1}$$

где *σ=k*_BT_{el}, *f_n* – заселенность *n*-го уровня с энергией ε_n

> Отдельный МТР для каждой температуры!

Машинно-обученные межатомные потенциалы

Moment Tensor Potential (МТР), программный пакет MLIP-3:

- набор программ и утилит для построения МТР на основе расчетов из первых принципов
- интерфейс с LAMMPS для МД-расчетов

Гиперпараметры в МТР, зависящие от пользователя:

- уровень потенциала (кол-во базисных функций дескриптора, размерность тензоров для описания многочастичного взаимодействия);
 в основном определяет точность
- радиус обрезания:
- относительные веса энергии, сил напряжений
- обучающая выборка из DFT-расчетов +----

репрезентативная база строится при помощи
Активного Обучения (D-алгоритм),
включающего в себя постепенное дообучение
потенциала на «плохих» конфигурациях

потенциала

- 1. A.V. Shapeev, Multiscale Modeling and Simul 2016. Vol. 14, 1153
- 2. E.V. Podryabinkin, A.V. Shapeev. Comp. Mat. Sci. 2017. Vol. 139, 26

Обучение МТР

U, DFT+U, GGA PBE

т, к	кол-во снимков	СКО <i>Е</i> мэВ/ат.	СКО <i>Ғ</i> эB/Å
2500	2333	4.0	0.36
3000	2618	6.2	0.39
4000	2293	5.0	0.38
5000	2778	5.9	0.47
6000	2318	5.2	0.49
7000	1027	4.0	0.35
8000	812	3.1	0.30
9000	953	3.2	0.29
10000	840	3.4	0.33
20000	840	1.7	0.18
30000	840	1.2	0.09
40000	840	1.6	0.08
50000	840	2.2	0.07
60000	840	2.9	0.08

Pu, DFT+*U*, GGA PBE

т, к	кол-во снимков	СКО <i>Е</i> мэВ/ат.	СКО <i>F</i> эВ/Å
1000	1760	5.0	0.30
1500	1728	4.4	0.26
2000	1742	2.2	0.24
3000	1144	4.0	0.41
4000	1142	3.6	0.36
5000	1144	3.6	0.32
7500	1147	4.0	0.35
10000	606	3.5	0.30
15000	858	2.2	0.21
20000	829	1.4	0.11
30000	438	3.3	0.16
40000	440	1.3	0.13
50000	718	1.5	0.09

Pt, DFT+U, GGA PBEsol

т, к	кол-во снимков	СКО <i>Е</i> мэВ/ат.	СКО <i>F</i> эВ/Å
2000	903	3.5	0.24
2500	1239	3.1	0.21
3000	1193	3.3	0.22
4000	1538	3.4	0.20
5000	1767	2.6	0.16
7500	1247	3.1	0.21
10000	1365	3.7	0.26
15000	1360	2.4	0.17
20000	1116	2.3	0.16
30000	750	1.5	0.19
40000	745	1.0	0.08
50000	869	1.1	0.06
60000	898	1.7	0.07
70000	895	2.8	0.10

МД расчет вязкости

Динамическую вязкость при различных плотностях и температурах рассчитаем с помощью соотношения Кубо-Грина через автокорреляционную функцию сдвиговых напряжений $\sigma_{\alpha\beta}$

$$\eta = \frac{1}{3TV} \int_{0}^{\infty} dt \sum_{\alpha < \beta} \left\langle \sigma_{\alpha\beta}(t) \sigma_{\alpha\beta}(0) \right\rangle,$$

где α и β – декартовы координаты. Значения σ_{αβ}(*t*) получались на статистически независимых МД траекториях в *NVT* расчетах для жидкости.

Вязкость урана

1—7 — Фальков А.Л. и др., **Метод псевдоатомной молекулярной динамики** для расчета коэффициентов вязкости и ионной самодиффузии плотной плазмы, ЖЭТФ, 2022, том 161, вып. 3, стр. 438-452;

Фальков А.Л., Структурные и теплофизические свойства плотного ионизированного вещества с учетом кулоновских корреляций, дисс. канд. физ.мат. наук, РФЯЦ-ВНИИТФ, Снежинск – 2024.

8 – Kress J. D., Cohen J. S., Kilcrease D. P. et al. Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium // High Energy Density Physics. – 2011. – Vol. 7. – pp. 155 – 160.

Звезды – экспериментальные измерения вязкости жидкости при P[~]0 – D. Ofte, The Viscosities of Liquid Uranium, Gold and Lead, J. Nucl. Mater., 22 (1967) 28-23; Wittenberg, L.J, A Model for Liquid Uranium and Plutonium with Implications on the Adjacent Solid Phases, in Plutonium 1975 and Other Actinides. Proc. 5th Int. Conf. on Plutonium and Other Actinides, Blank, H. and Linder, R., Eds., Baden-Baden: North-Holland Publishers, 1976, p. 71.

Цветные окружности – Классическая молекулярная динамика: вязкость жидкости при P[~]0 – D.K. Belashchenko, D.E. Smirnova, O.I. Ostrovski, 2010, Teplofizika Vysokikh Temperatur, 2010, Vol. 48, No. 3, pp. 383–395; J. Tranchida et al., Thermophysical properties and unexpected viscosity of liquid (U, Zr): An atomistic investigation, J. Chem. Phys. 160, 214507 (2024).

Остальные символы – AIMD+MLIP – изохоры и изобара Р~0 – наши данные (Отчет ВНИИТФ инв. № М-19447 (2024))

Плавление плутония

Расчет точки плавления выполнен при помощи метода термодинамического интегрирования

Эксперимент:

- Купер Н.Г. Плутоний: Фундаментальные проблемы. Саров 2003

<u>Эксперимент:</u> L.J. Wittenberg et al. Nuclear Application 1967. Vol. 3, 550 <u>AIMD:</u> J.D. Kress. Physical Review B 2011. Vol. 83, 026404

10

Плавление платины

Эксперимент:

- Paradis P.F. Johnson Matthey Technology Review 2014. Vol. 58, 124.

11

Эксперимент:

- A.A. Zhuchenko, E.I. Dubinin Izv. Vyssh. Uchebn. Zaved. 1977. Vol. 4, 142
- T. Ishikawa et al. Meas. Sci. Technol. 2012. Vol. 23, 025305

Диффузия и ПКФ платины

13

Соотношение Стокса-Эйнштейна для ЭЗНЧ ЗАБАБАХИНСКИЕ Соренните Стокса-Эйнштейна для ЗЗНЧ ЗАБАБАХИНСКИЕ Соренните Соренные чтения 2025

Энтропия расплава. Вклад многочастичных взаимодействий

Избыток энтропии по сравнению с идеальным газом

$$S_{\text{exc}} = S_{\text{tot}} - S_{\text{ig}} = S_2 + S_3 + \dots$$
$$S_{\text{ig}} = -\ln\left[v\left(\frac{h^2}{2\pi m k_B T}\right)^{\frac{3}{2}}\right] + \frac{5}{2}$$

Вклад парного взаимодействия S₂ [1]:

$$S_{2} = \frac{2\pi k_{B}}{v} \int_{0}^{r_{c}} \left[g(r) \ln g(r) - g(r) + 1 \right] r^{2} dr$$

S_{ехс} вычисляется с помощью метода термодинамического интегрирования (ТИ) [2]

R.E. Nettleton, R. Green. J. Chem. Phys. 1958. Vol. 29, 1365
R. Paula Leite, M. de Koning. Comp. Mat. Sci. 2019. Vol. 159, 316

Заключение

- Построены машинно-обученные потенциалы для урана, плутония и платины, предназначенные для моделирования теплого плотного вещества в диапазоне температур от точки плавления до 70 кК и плотностях от ρ_m до 2ρ_m;
- При помощи MLIP выполнены расчеты коэффициента динамической сдвиговой вязкости. Значения *η* для рассматриваемых материалов лежат в диапазоне от единиц до нескольких десятков мПа·с;
- В работе выполнен анализ структурных и динамических характеристик расплавов, а также определены значения коэффициентов в соотношении Стокса-Эйнштейна