

XVII Международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ» ЗНЧ-2025

КОРПУСКУЛЯРНАЯ ДИАГНОСТИКА СИЛЬНОТОЧНОГО НАНОСЕКУНДНОГО РАЗРЯДА ТИПА НИЗКОИНДУКТИВНАЯ ВАКУУМНАЯ ИСКРА С ЛАЗЕРНЫМ ИНИЦИИРОВАНИЕМ

<u>Е.Д. Вовченко</u>, К.И. Козловский, А.Е. Шиканов, А.П. Мелехов, Е.А. Морозова, Н.И. Карпов, А.М. Алехин

CORPUSCULAR DIAGNOSTICS OF HIGH-CURRENT NANOSECOND DISCHARGE OF THE LOW-INDUCTANCE VACUUM SPARK TYPE WITH LASER INITIATION

<u>E.D. Vovchenko</u>, K.I. Kozlovskij, A.E. Shikanov, A.P. Melekhov, E.A. Morozova, N.I. Karpov, A.M. Alyokhin

National Research Nuclear University «MEPhI», Moscow, Russia

19 - 23 мая 2025 г.

Низкоиндуктивная вакуумная искра (НВИ)

- источник плотной горячей плазмы, образующейся из материала электродов

ИСТОРИЯ

1905–1924, Милликен – высоковольтный разряд вакууме можно использовать в качестве Β источника коротковолнового ВУФ излучения. 1918, Millican R.A. and Sawyer R. A. Extreme Ultra-Violet Spectra of Hot Sparks in High Vacua / Physical Review vol. 12, Issue 2, pp. 167-170. 1924, Millican R.A. and Bowen I.S. Extreme Ultra-Violet Spectra / Physical Review vol. 23, Issue 1, pp. 1-34.

First Series

January, 1924

Vol. 23, No. 1

THE

Роберт Эндрюс Милликен (Нобелевская премия по физике1923 год)

PHYSICAL REVIEW

EXTREME ULTRA-VIOLET SPECTRA BY R. A. MILLIKAN AND I. S. BOWEN ABSTRACT

Разряды типа НВИ известны с середины XX века. Их отличает простая схема реализации, в которой большой ток достигается за счет уменьшения индуктивности разрядного контура ($I_{
m Make} = U_0/
ho$, $ho = \sqrt{L/C}$) 2

НВИ в режиме микропинчевания

- □ При токах разряда НВИ превышающих критическую величину (≈45-50 кА) пинч-эффект приводит к высокой степени сжатия плазмы с образованием одного или нескольких микропинчей».
- □ Микропинч («плазменная точка», «горячая точка») уникальный плазменный объект микронных размеров с высокими концентрацией (N_e≈10²¹ см⁻³) и температурой (T_e ≈ 10 кэВ) электронов.
- Образовании микропинча сопровождается генерацией интенсивного рентгеновского излучения и получением в разрядном промежутке многозарядных ионов (МЗИ) вплоть до водородоподобных структур, что неоднократно подтверждалось с помощью рентгеновской спектроскопии.
- В эмиссионных спектрах регистрируются быстрые заряженные частицы (электроны и многозарядные ионы), энергии которых могут превышать энергию прямого ускорения в разрядном промежутке.

НВИ в режиме микропинчевания – источник интенсивного рентгена и быстрых многозарядных ионов

3 - вспомогательная искра

τ1/2

Актуальность исследования НВИ – многообразие существующих режимов разряда Два «полярных» направления развития НВИ

«Медленные» НВИ с большими токами (*I* > 100 кА) и искровым (триггерным) инициированием

«Быстрые» НВИ с высоким *dI/dt* и лазерным инициированием

Триггер – скользящая искра по поверхности диэлектрика. Простая конструкция, но требующая защиты триггера от высокого напряжения.

НВИ с Fe-электродами

Режим микропинчевания:

- в разряде образуются ионы вплоть до **Fe XXVI и Fe XXV**.

- в эмиссионных спектрах ионов максимальный заряд **Z < 10**.

Лазерная плазма на электроде. Быстрый ввод аблируемого материала электрода в разрядный промежуток с возможностью изменения его количества.

НВИ с Fe-электродами

Докритический режим (*I* < 30 кА):

 в эмиссионных спектрах ионов широкий диапазон заряда Z = 2 - 18

Аллигатор: НВИ с лазерным инициированием и времяпролетный масс-спектрометр

Аллигатор

НВИ с лазерным инициированием и времяпролетный масс-спектрометр

Аллигатор: режимы разряда

Рентгеновская обскура

a) hv > 10 кэВ

Аллигатор: рентген (ТЛД) и ионы

Установка ПИНЧ сильноточная НВИ с лазерным инициированием

<u>Направление исследований</u>: разработка компактного лазерноискрового источника быстрых многозарядных ионов.

Компактная низкоиндуктивная электроразрядная система

Емкость 0,22 мкФ/25 кВ Индуктивность 32 + 20 нГн Ток разряда до 40 кА Напряжение до 23 кВ YAG: Nd+3 лазер (300 мДж/10 нс)

Первые результаты на установке ПИНЧ

Развертка 5 мкс/дел

Возможность получения МЗИ при «глубоком» пинчевании 11

Лазерно-плазменная установка «ПИНЧ» (НВИ с лазерным инициированием)

«ПИНЧ» – разряд типа НВИ с лазерным инициированием

<u>YAG:Nd⁺³ лазер</u>: энергия $E = 50 \div 500$ мДж, длительность $\tau \approx 10$ нс. Сильноточный (до 90 кА). Сверхбыстрый (*dl/dt* ≈ 10¹²A/c). Электроды из Со (99,9%).

<u>Разрядный контур</u>: C= 0,6 мкФ, L ≈ 38 нГн, ρ ≈ 0.25 Ом. Давление *P* < 10⁻⁶ торр

Анодное и катодное инициирование разряда

Базовые диагностики на установке «ПИНЧ»

ТОК. Пояс Роговского в режиме трансформатора тока $rac{d\Phi(t)}{dt} = U_{
m p} = L_{
m p} rac{di(t)}{dt} + i(t) R pprox L_{
m p} rac{di(t)}{dt}$ Слабозатухающие колебания тока $I(t) = I_{
m MAKC} exp \left(-rac{R}{2L}t\right)$

КОЛЛЕКТОР. Выполнен в виде цилиндра Фарадея помещался в камеру с остаточным давлением 8×10⁻⁷ торр.

Регистрация ионов с помощью времяпролетных коллекторных измерений

Для подавления электронной компоненты применялось поперечное магнитное поле $B_{\text{КОЛ}} = 0,1$ Тл.

Группа медленных ионов U = 0 A = 0.8 B $U = 5 \ B A > 7 B$ Скорость $v \approx 10^7 \ CM/C$

Импульс с коллектора ионов без напряжения (*U* = 0)

Импульс с коллектора ионов при *U* = 5 кВ **15**

Установка «ПИНЧ». ДИАГНОСТИКИ

Развертка 500 нс/дел

- 1. Фотоэлектрическая регистрация лазерного импульса (фотодиод).
- 2. Регистрация поведения тока с помощью пояса Роговского
- 3. Регистрация сигнала с коллектора (цилиндр Фарадея)

Модификация времяпролетной диагностики

Ключевой проблемой является присутствие в пучке легких ионов (в первую очередь водорода)

Для отклонения легких ионов от входной апертуры коллектора применено поперечное отклоняющее поле.

Расчет удаления от коллектора выполнен для поля В_{ОТКЛ}=0,1 Тл и быстрой компоненты ионов водорода с энергиями до 300 кэВ.

Регистрация тока и коллекторные измерения быстрых ионов Со при анодном инициировании

Развертка 200 нс/дел, *E*_{лА3} = 150 мДж

Регистрация тока и коллекторные измерения быстрых ионов (катодное инициирование)

- Пинч 1 сжатие катодной струи плазмы при росте тока.
- Пинч 2 глубокое сжатие плазмы, при котором образуются быстрые многозарядные ионы.
- ▶ Первая группа ионов наиболее быстрые многозарядные ионы Со

Анализ коллекторных измерений

- 1. Ток достигает максимальной величины за время τ ~ 50 60 нс при анодном инициировании (АИ) и τ ~ 100 120 нс при катодном инициировании (КИ), причем скорость *dI/dt* выше по сравнению с синусоидальной формой.
- 2. Задержка тока относительно лазерного импульса меньше при катодном инициировании, и $t_{3 (KU)} = 80$ нс $< t_{3 (AU)} = 120$ нс.
- 3. Ионов больше при катодном инициировании за счет эмиссии с анода.
- 4. При превышении порога пинчевания ($I_{\rm P} \approx 50$ кА) увеличивается доля быстрых ионов с характерной скоростью, превышающей $\approx 10^8$ см/с и суммарным зарядом $\sim 10^{-9}$ кулон (10^{10} ионов).
- 5. Формирование провалов и выбросов на особенности тока имеет нерегулярный характер, что приводит к разбросу в эмиссионных спектрах ионов.
- 6. Надежной идентификации быстрых МЗИ кобальта (первые 400 нс) мешает присутствие в коллекторном сигнале фотопиков. 20

Масс-спектрометр и фильтр Вина

Времяпролетная диагностика ионов с магнитным масс-спектрометром ионов и МКП детектором

Выполнены расчеты и разработан проект компактного магнитного массспектрометра, оптимизированного под эксперимент для регистрации ионов кобальта с зарядностью *Z* = 10 ÷ 20 и скоростями выше 10⁸ см/с

1 — два постоянных $Nd_2Fe_{14}B$ магнита (20 х 50 х 100 мм, $B_M \leq 1,0$ Тл; 2 и 3 — входная и выходная щели (0,1 х 10 мм); 4 — детектор ионов на основе микроканальной пластины (МКП); 5 — ловушка для фотонов;

Времяпролетная диагностика ионов с магнитным масс-спектрометром ионов и МКП детектором

Времяпролетная диагностика ионов с магнитным масс-спектрометром ионов и МКП детектором

- ➤ 1. Щели расположены на окружности R= 50 см.
- 2.Время 300 нс на пролетной длине 1,25 м дает скорость 4,2 х 10⁶ м/с.
- > 3. Поле Nd₂Fe₁₄В магнита B = 0,45 Тл.
- У 4. Оценка заряда для ионов кобальта с атомной массой А =59 дает Z = Mv/ReB ≈ 11

Оценка скорости и времени пролета МЗИ Со, регистрируемых МКП

Исходные данные: многозарядные ионы кобальта ($Z=10\div20$), индукция магнитного поля $B_{\rm M} = 0.45$ Тл, расстоянии между щелями спектрометра10 см,

Ионы	Скорость v, см/с	Время пролета $\boldsymbol{\tau}$, нс
Co ⁺¹⁰	2.11 x 10 ⁸	592
Co ⁺¹¹	2.32 x 10 ⁸	539
Co ⁺¹²	2.53 x 10 ⁸	494
Co ⁺¹³	2.74 x 10 ⁸	456
Co ⁺¹⁴	2.95 x 10 ⁸	424
Co ⁺¹⁵	3.17 x 10 ⁸	394
Co ⁺¹⁶	3.38 x 10 ⁸	370
Co ⁺¹⁷	3.59 x 10 ⁸	348
Co ⁺¹⁸	3.80 x 10 ⁸	329
Co ⁺¹⁹	4.01 x 10 ⁸	312
Co ⁺²⁰	4.22 x 10 ⁸	296
H ⁺¹	12.5 x 10 ⁸	100

Радиус *R* =27 см

Продольный размер магнитного поля L=10 см

Поперечное смещение щелей s=2 см

Лазерно-плазменная установка «ПИНЧ» (после последней модернизации)

Длина времяпролетной базы увеличена до 2-х метров. Давление в трубе не хуже 10⁻⁶ торр. Разрядный ток до 100 кА при напряжении 25 кВ.

Заключение

- 1. Проведено экспериментальное исследование потоков ионов, образующихся при пинчевании сверхбыстрого сильноточного разряда в лазерной плазме, инициируемой на внутреннем высоковольтном электроде в режимах с анодным и катодным инициированием.
- 2. С помощью времяпролетной коллекторной методики зарегистрировано до 10¹⁰ ионов кобальта за один импульс в телесный угол 0,04 рад со средней скоростью (3 ÷ 6) ×10⁸ см/с, что соответсвует энергиям 2 ÷ 8 МэВ.
- 3. Разработан и апробирован компактный магнитный массспектрометр, оптимизированный под эксперимент для регистрации ионов кобальта с зарядностью Z =10 ÷ 20 и скоростями выше 10⁸ см/с.

СПАСИБО ЗА ВНИМАНИЕ!