

XVII Международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ» 19–23 мая 2025 г. Снежинск, Россия

Генерация импульсов терагерцевого излучения с высокой напряженностью электрического поля и их применение в исследованиях взаимодействия с различными материалами

О. В. Чефонов, А.В. Овчинников

Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН), г. Москва, Россия

Терагерцевый спектральный диапазон излучения

Частота	Длина волны	Энергия	Волновое число
10 ¹¹ ÷ 10 ¹³ Гц	0.03 ÷ 3 мм	0.41 ÷ 41 мэВ	3.3 ÷ 333.3 см ⁻¹

1 ТГц = 10¹² Гц

Частота	Длина волны	Энергия	Волновое число
1 ТГц	300 мкм	4.14 мэВ	33.3 см ⁻¹

Основные методы генерации ТГц излучения с применением фемтосекундных лазерных импульсов

- Фотопроводящая антенна. Генерация ТГц импульсов осуществляется с помощью короткоживущих носителей заряда, индуцированных сверхкороткими лазерными импульсами. Позволяет получить широкополосную и узкополосную генерацию. Спектральный диапазон генерации находится в диапазоне 0.3 – 1.5 ТГц.
- 2. Лазерно-плазменные методы. Генерация ТГц импульсов происходит в газе, жидкости или твердом теле при воздействии фемтосекундных импульсов с высокой интенсивностью (>10¹⁵ Bt/cm²). Основным преимуществом данных методов является широкий спектральный диапазон генерации 0.3-30 ТГц и возможность получить ТГц импульсы с высокой напряженностью электрического поля.
- **3.** Оптическое выпрямление. Генерация ТГц импульсов происходит при распространении фемтосекундных лазерных импульсов в нелинейной среде. Данный метод позволяет получить широкий спектр генерации 0.3-10 ТГц, высокую конверсионная эффективность и высокие значения напряженности электрического поля ТГц импульса. Преимуществом данного метода является простота реализации.

Нелинейные кристаллы, используемые для генерации ТГц излучения методом оптического выпрямления фемтосекундных лазерных импульсов

Неорганические кристаллы

LiNbO₃. Накачка - излучение с длиной волны 800 нм. Спектральный диапазон генерации 0.3-1.5 ТГц. Конверсионная эффективность 3.7% при криогенном охлаждении кристалла.

ZnTe. Накачка - излучение с длиной волны 800 нм. Спектральный диапазон генерации 0.3-2.5 ТГц. Конверсионная эффективность 0.01% при комнатной температуре.

Органические кристаллы

DSTMS, DAST, OH1. Накачка - излучение с длиной волны 1100-1600 нм. Спектральный диапазон генерации 0.3-10 ТГц. Конверсионная эффективность 3% при комнатной температуре.

BNA. Накачка - излучение с длиной волны 1030 нм. Спектральный диапазон генерации 0.3-2 ТГц. Конверсионная эффективность 0.1% при комнатной температуре.

Тераваттная хром-форстеритовая фемтосекундная лазерная система ОИВТ РАН

Тераваттная хром-форстеритовая фемтосекундная лазерная система ОИВТ РАН

Параметры лазерной системы

- 1. Длина волны **1240 нм**
- 2. Ширина спектра 25 нм
- 3. Энергия в импульсе до 80 мДж
- 4. Длительность импульса 100 фс
- 5. Частота повторения 1 10 Гц

Спектры генерации ТГц излучения в кристаллах DSTMS, DAST и OH1 при накачке лазером с длиной волны 1240 нм

DSTMS - 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate OH1 - (2-(3-(4-Hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile) DAST - 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate

Сравнение генерации ТГц излучения в кристаллах DSTMS, DAST и OH1

Генерация ТГц излучения в кристалле DSTMS

Генерация импульсов ТГц излучения в мозаичном кристалле DSTMS

Кристалл состоит из двух раздельных пластин толщиной 440 мкм и с линейными размерами 6 мм х 10 мм и 5 мм х 12 мм. Элементы неорганического кристалла закреплены на подложке из стекла толщиной 3 мм и просветляющим покрытием на длины волн в диапазоне 1100-1600 нм. Эффективный диаметр кристалла ~8 мм.

Временная форма ТГц импульса и его спектр

W_{TГц} ~ 120 мкДж т_{FWHM} ~ 700 фс R_{1/e} ~ 95 мкм Е_{ТГц} ~ 22 MB/см

Генерация импульсов ТГц излучения в кристалле OH1

Кристалл состоит из одной пластины толщиной 570 мкм, который закреплен на металлической пластине с отверстием 8 мм.

Временная форма ТГц импульса и его спектр

₩_{TГц} ~ 150 мкДж
 τ_{FWHM} ~ 400 фс
 *R*_{1/e} ~ 120 мкм
 *E*_{TГц} ~ 23 MB/см

Оптимизация генерации ТГц излучения в кристалле OH1

Энергия ТГц импульса

Конверсионная эффективность

Оптимизация генерации ТГц излучения в кристалле ОН1

Генерация ТГц излучения из мозаичного комбинированного кристалла

Генерация узкополосных ТГц импульсов с перестраиваемой центральной частотой

Примеры временных профилей и спектров лазерного импульса накачки

Управление шириной спектра ТГц импульса с перестраиваемой центральной частотой

Генерация узкополосного терагерцового излучения с различной центральной частотой в кристалле DSTMS

Основные параметры источника ТГц излучения

Режим широкополосной генерации ТГц излучения

- 1. Энергия в импульсе 100-150 мкДж
- 2. Ширина спектра излучения 0.3-7 ТГц (основная энергия до 3 ТГц)
- 3. Максимальная напряженность электрического поля до 20-25 МВ/см
- 4. Длительность импульса 0.4-0.7 пс
- 5. Конверсионная эффективность до 3%
- 6. Частота повторения импульсов до 10 Гц

Режим узкополосной генерации ТГц излучения

- 1. Энергия в импульсе в зависимости от выбранной частоты излучения до 20 мкДж
- 2. Минимальная ширина спектра излучения ~30 ГГц
- 3. Перестройка центральной частоты в диапазоне широкополосной генерации
- 4. Максимальная напряженность электрического поля до 10 МВ/см
- 5. Максимальная длительность импульса 30 пс
- 6. Конверсионная эффективность 0.02% до 2.8%
- 7. Частота повторения импульсов до 10 Гц

Параметры ТГц источников, созданных в за рубежом

- Энергия ТГц импульса 1.4 мДж была получена в кристалле LiNbO3, а максимальная напряженность достигала 6.3 МВ/см, накачка 800 нм 214 мДж, конверсионная эффективность 0.7%, основной спектральный диапазон генерации от 0.1 до 1 ТГц с максимумом в области 0.5 ТГц. Laser Photonics Rev. 15, 2000295 (2021).
- Из плазмы был получен импульс ТГц излучения с энергией 185 мкДж. В качестве накачки использовалось лазерное излучение с длиной волны 3.9 мкм и энергией в импульсе 8.12 мДж, конверсионная эффективность 2.36%, спектр излучения в диапазоне от 0.1 до 20 ТГц с максимумом в области 8 ТГц. Максимальная напряженность поля ~100 MB/см. <u>Nature communications (2020) 11:292</u>
- Генерация узкополосного ТГц импульса была получена в кристалле LiNbO3 на частоте 0.361
 ТГц (ширина полосы ~3 ГГц) с энергией в импульсе 0.6 мДж, для накачки использовалось лазерное излучение с длиной волны 800 нм, длительностью 260 пс и энергией 1.2 Дж. Напряженность электрического поля 18 MB/см. <u>Nature communications (2019) 10:2591</u>
- Генерация ТГц излучения была получена в кристалле DSTMS. При накачке оптическим параметрическим усилителем чирпированных импульсов генерируемая энергия ТГц импульса достигала 175 мкДж, а электрическое поле в фокусе составляло около 17 МВ/см. Конверсионная эффективность 1.7%. <u>Optics Express (2023) Vol. 31, No. 15 23923</u>

Нелинейное пропускание кремния n-типа под действием ТГц импульсов с высокой интенсивностью

Увеличение пропускания 90 составило раз. Показано, ЧТО ΤГц высокой импульсы С интенсивностью приводят к времени уменьшению междолинного рассеяния электронов и уменьшению коэффициента поглощения.

Нелинейное пропускание кремния n-типа под действием ТГц импульсов с высокой интенсивностью

Динамика генерации свободных носителей заряда, индуцированная ТГц импульсами в кремнии р-типа

Экспериментальная схема

Экспериментальный образец: пластина кремния р-типа толщиной 235 мкм, концентрация легирующей примеси 10¹⁶ см⁻³

Зависимость коэффициента пропускания Si на длине волны зондирующего импульса 1240 нм в зависимости от времени задержки между ТГц и зондирующим импульсами

Динамика генерации свободных носителей заряда, индуцированная терагерцевыми импульсами в кремнии р-типа

Динамика увеличения концентрации свободных

Распределение концентрации свободных носителей по глубине образца

Синяя линия – модуль напряженности электрического поля ТГц импульса.

Красная линия – концентрация свободных носителей.

Образец: Si p-тип N ~ 10¹⁶ см⁻³

Синхронизация временной формы ТГц импульса с измерениями коэффициента пропускания пробного излучения

Экспериментальная схема

Красная линия — интенсивность сигнала второй гармоники Синяя линия — временная форма ТГц импульса Черная линия — коэффициент пропускания Si на длине волны излучения 1240 нм

Оценка средней скорости ионизации за время 250 фс:

Коэффициент пропускания по эксп. кривой 0.94 Показатель поглощения проба ~62 см⁻¹ Концентрация свободных носителей по Друде ~10¹⁹ см⁻³ Средняя скорость генерации носителей ~10¹⁴ с⁻¹

Генерация второй оптической гармоники при взаимодействии фемтосекундного лазерного и пикосекундного терагерцевого импульсов в сапфире

Взаимодействие ТГц импульсов с металлическими пленками (Алюминий)

Изображения с электронного микроскопа AI пленки после воздействия 60 импульсов ТГц излучения с плотностью энергии F=0.24 Дж/см²

Изображения с электронного микроскопа Al пленки толщиной 25 нм после однократного воздействия ТГц импульса с плотностью энергии (a-c) F=0.14 Дж/см², (d-f) F=0.3 Дж/см². Порог разрушения F=0.15 Дж/см²

Взаимодействие ТГц импульсов с металлическими пленками (Никель)

Изображения с электронного микроскопа Ni пленки толщиной 25 нм после однократного воздействия ТГц импульса с плотностью энергии (a) F=0.43 Дж/см², (b) F=0.39 Дж/см².

Изображения с электронного микроскопа Ni пленки после воздействия 40 импульсов TГц излучения с плотностью энергии F=0.43 Дж/см²

Список публикаций

1. Agranat, M.B., Ovchinnikov, A.V., Chefonov, O.V. Ionization of a Silicon Surface Layer Induced by a High-Intensity Subpicosecond Electric Field. Journal Of Infrared Millimeter And Terahertz Waves 45, 383–391 (2024).

2. О. В. Чефонов, А. В. Овчинников, М. Б. Агранат, С. Б. Бодров, М. А. Киселев, А. Н. Степанов, Генерация второй оптической гармоники при взаимодействии фемтосекундного лазерного и пикосекундного терагерцевого импульсов в сапфире, ТВТ, 2024, том 62, выпуск 5, 739–749

3. Brekhov, K.; Bilyk, V.; Ovchinnikov, A.; Chefonov, O.; Mukhortov, V.; Mishina, E. Resonant Excitation of the Ferroelectric Soft Mode by a Narrow-Band THz Pulse. Nanomaterials 2023, *13*, 1961

4. A. V. Ovchinnikov, O. V. Chefonov, M. B. Agranat, M. Shalaby, D.S. Sitnikov. Terahertz generation optimization in a OH1 nonlinear organic crystal pumped by a Cr:forsterite laser. Optics letters, 47(21),pp. 5505-5508 (2022).

5. A. V. Ovchinnikov, O. V. Chefonov, M. B. Agranat, A.V., Kudryavtsev, E. D. Mishina and A. A. Yurkevich Free-carrier generation dynamics induced by ultrashort intense terahertz pulses in silicon. Optics Express, 29(16) pp. 26093-26102 (2021).

6. Ovchinnikov A. V., Chefonov O. V., Agranat M.B., Fortov V.E., M. Jazbinsek, Hauri C.P., Generation of strong-field spectrally tunable terahertz pulses. Optics Express, 28(23), pp. 33921-33936 (2020).

7. Ovchinnikov, A.V., Chefonov, O.V., Mishina, E.D., Agranat, M.B. "Second harmonic generation in the bulk of silicon induced by an electric field of a high power terahertz pulse" Scientific Reports, 9 (1), статья № 9753 (2019)

8. Chefonov, O.V., Ovchinnikov, A.V., Hauri, C.P. and Agranat, M.B.,. Broadband and narrowband laser-based terahertz source and its application for resonant and non-resonant excitation of antiferromagnetic modes in NiO. Optics Express, 27(19), pp. 27273-27281 (2019)

9. Agranat M.B., Chefonov O.V., Ovchinnikov A.V., Ashitkov S.I., Fortov V.E., Kondratenko P.S. "Damage in a Thin Metal Film by High-Power Terahertz Radiation", Phys Rev Lett, V.120, 8, 085704, (2018)

10. Chefonov, O., V; Ovchinnikov, A., V; Evlashin, S. A.; Agranat, M. B. Damage Threshold of Ni Thin Film by Terahertz Pulses. Journal Of Infrared Millimeter And Terahertz Waves, 39(11) pp. 1047-1054 (2018).

11. Chefonov, O.V., Ovchinnikov, A.V., Agranat, M.B., Fortov, V.E., Efimenko, E.S., Stepanov, A.N. and Savel'ev, A.B., 2018. Nonlinear transfer of an intense few-cycle terahertz pulse through opaque n -doped Si. Physical Review B, 94(16).

12. Vicario, C., Jazbinsek, M., Ovchinnikov, A.V., Chefonov, O.V., Ashitkov, S.I., Agranat, M.B. and Hauri, C.P., High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Optics Express, 23(4), pp. 4573-4580 (2015).

13. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri «Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser», Optics letters, Vol. 39, No. 23, pp.6632-6635 (2014)