

Трехмерные аналитические расчеты поля теплового излучения внутри сферического бокса с круговыми конверторами, нагреваемыми снаружи лазерными пучками мегаджоульной установки

XVII Международной конференции «Забабахинские научные чтения» (19–23 мая 2025, Снежинск).

И.А Химич, В.А. Лыков и Г.Н. Рыкованов

Эксперименты на NIF с положительным выходом т.я. энергии

Seventh Ignition Experiment Achieves Record Gain

Коэффициент усиления по энергии в рекордных опытах на NIF с мишенями непрямого облучения

Введение

В работе [1] опубликованы результаты 3D-моделирования конверсии лазерного излучения в рентгеновское в сферическом боксе, предназначенное для сжатия мишени непрямого облучения. Эти расчеты были выполнены для проектных параметров Российской мегаджоульной лазерной установки в предположении, что 48 лазерных пучков будут вводить внутрь сферического бокса через 6 отверстий при сохранении полной симметрии куба [1].

Монтаж мишенной камеры в г. Сарове (https://nn.mk.ru/social/2019/04/24)

Схема облучения [1]

Расчетная сетка в 3D-расчетах [1]

1. Бондаренко С.В. и др. // ВАНТ сер. Мат. мод. физ. процессов. – 2020. – Вып. 3. – С. 11-22.

Введение (продолжение)

В статье [1] отмечено: "Как показали проведенные трехмерные расчеты, значительная часть лазерного излучения поглощается во внутреннем объеме бокса вблизи отверстий ввода, в плазме, «испаренной» излучением со стенок бокса..., что может привести к снижению симметрии рентгеновского излучения в центре бокса по сравнению со случаем, когда все лазерные пучки доходит до стенки бокса.»

Распределение температуры электронов в боксе для мишени с СН-аблятором [1]

Распределение температуры электронов в боксе для мишени с HDC-аблятором [1]

Трудности в обеспечении условий термоядерного зажигания мишеней как прямого [2], так и непрямого облучения [1] для проектных параметров Российской мегаджоульной лазерной установки стимулирует поиск альтернативных путей достижения этой цели.

1. Бондаренко С.В. и др. // ВАНТ сер. Мат. мод. физ. процессов. – 2020. – Вып. 3. – С. 11-22. 2. Бакуркина Е.С. И др. // Ядерная физика и инжиниринг. – 2019. – Том 10, №3. – С. 271-284.

Новый вариант схемы прямого-непрямого облучения мишеней ИТС

Термин «direct-indirect» впервые введен в работе [1], где предложено окружать сферическую мишень через вакуумный зазор тонкой оболочкой из золотой фольги, облучаемой снаружи лазерным излучением. Расчеты и эксперименты [1] указывают, что эффективность преобразования энергии лазерного излучения в односторонний поток теплового излучения с тыльной стороны конвертера может достигать v- $\approx 40\%$. В работе [2] в качестве конвертора предложено использовать малоплотные композиционные материалы.

Новая схема прямого-непрямого облучения мишеней внутри бокса с круговыми конверторами

Основное преимущество новой конструкции бокса с конвертерами (фольга или пена из материала с большим Z) – отсутствие проблем, связанных с запуском лазерного излучения внутрь бокса через отверстия. Недостатком новой схемы является увеличение потерь лазерной энергии до 60 %. 1. Eliezer S., et al. // Phys. Lett. A. - 1992. - Vol. 166. - 249-252.

2. С.Ю. Гуськов и Ю.А. Меркульев//Квантовая электроника. – 2001. – Том 31, №4. – С. 311-317.

Аналитические расчеты поля излучения внутри бокса с круговыми конверторами

Обмен излучением между поверхностями описывается уравнением энергетического баланса их малых участков, отнесенных к единичной поверхности [1]:

$$u(\vec{r},t) = f(\vec{r},t) - q(\vec{r},t) + \iint_{S_{gud}} u(\vec{r}',t - \frac{L}{c}) \frac{\cos(\gamma)\cos(\gamma')}{\pi L^2} d\vec{r}'$$

Здесь: $u = \sigma T^4$ — удельный (на единицу поверхности) поток энергии излучения, T — температура поверхности в эВ, $\sigma = 1,03 \cdot 10^5$ Вт/(см²·эВ⁴) — постоянная Стефана-Больцмана, r — координата, $S_{\text{вид}}$ — видимая из точки часть поверхности, f — удельный источник излучения — совокупность горячих пятен на поверхности конвертера, q — удельное поглощение, L — расстояние между точками r и r, γ и γ – углы между направлением L и нормалями к поверхностям в этих точках (см. рисунок 1).

Рисунок 1

Аналитические расчеты поля излучения... (продолжение 1)

В стационарном приближении решалась задача о нахождении поля теплового излучения внутри сферического бокса с круговыми конверторами, нагреваемыми снаружи лазерными пучками мегаджоульной установки. Решение искалось посредством разложения удельного потока, источников и функции стока излучения по сферическим функциям аналогично работе [1].

Для амплитуд удельного потока излучения была получена система алгебраических уравнений:

$$\begin{cases} u_{nm} = \alpha_M \hat{u}_{nm} A_n \\ \hat{u}_{nm} = \alpha_E \left(\hat{u}_{nm} B_n + u_{nm} k^2 A_n \right) + f_{nm} - g_{nm} \end{cases}$$

где $\alpha_{\rm M}$ и $\alpha_{\rm E}$ – альбедо мишени и бокса, соответственно, $k=R_M/R_E$,

 $u(\theta, \varphi) = \sum_{n=-n}^{\infty} \sum_{m=-n}^{n} u_{nm} Y_{nm}(\theta, \varphi), \hat{u}(\theta, \varphi) = \sum_{n=-n}^{\infty} \sum_{m=-n}^{n} \hat{u}_{nm} Y_{nm}(\theta, \varphi) -$ разложение по сферическим функциям удельного потока излучения с поверхности мишени *u* и конвертера \hat{u} ,

$$f_{nm} = \frac{1}{R^2} \sum_{i} p_i \zeta_{ni} Y_{nm}^*(\theta_i, \varphi_i), \zeta_{ni} = \frac{\int_0^{\vartheta_i} I_i(\tilde{\theta}) P_n(\cos\tilde{\theta}) \sin\tilde{\theta} d\tilde{\theta}}{\int_0^{\vartheta_i} I_i(\tilde{\theta}) \sin\tilde{\theta} d\tilde{\theta}}$$
$$A_n = 2 \int_k^1 P_n(x) \frac{(x-k)(1-kx)}{(1+k^2-2kx)^2} dx, B_n = 0, 5 \int_{2k^2-1}^1 P_n(x) dx$$

- разложение источников по сферическим функциям, где $2\vartheta_i$ – угол раствора i-го пятна, p_i – мощность *i*-го пятна, I_i – яркость i-го пятна.

Связь
$$p_i$$
 и I_i задается следующей формулой: $\int_{0}^{g_i} I_i(\tilde{\theta}) \sin \tilde{\theta} d\tilde{\theta} = \frac{p_i}{2\pi R^2}$

1. Шибаршов Л.И., Физика мишеней инерциального термоядерного синтеза. – Снежинск: Изд-во РФЯЦ-ВНИИТФ. – 2014.

Аналитические расчеты поля излучения... (продолжение 2)

$$g_{nm} = \frac{2\pi}{2n+1} \frac{\hat{u}_0}{\sqrt{4\pi}} (\alpha_E - \alpha_K) \left(1 - \alpha_M k^2\right) \sum_{i=1}^M Y_{nm}^* (\theta_i, \varphi_i) [P_{n-1}(\cos \theta_{oi}) - P_{n+1}(\cos \theta_{oi})] - \phi_{i} \psi_{i} \psi_{i$$

где 29_{оі} – угол раствора *i*-го конвертора, α_M , α_B , α_K – альбедо мишени, бокса и конвертеров, соответственно.

Асимметрия потока излучения на мишени характеризуется относительным среднеквадратичным отклонением и отклонением потока от среднего значения.

Поток излучения, падающий на мишень есть: $j_{nm} = u_{nm}A_n$.

Тогда относительное среднеквадратичное отклонение падающего потока на мишень:

$$\delta = \sqrt{\frac{j_{nm}^2}{j_0^2} - 1}$$

а отклонение потока от среднего значения:

$$\eta = \frac{\max(j_{nm}) - \min(j_{nm})}{2\overline{j}}$$

Также, как одна из характеристик, интересен гармонический состав асимметрии:

$$\delta_n = \sqrt{\frac{\sum_m j_{nm}^2}{j_0^2}}$$

Расчеты поля излучения для 6-ти конверторов оросатом

Расчеты проведены для 6-ти конвертеров, расположенных в центре граней воображаемого куба.

Распределение потока излучения на мишени для k=1/4; S_K=16 %; $\alpha_M=0,25$; $\alpha_E=0,85$; $\alpha_K=0,7$. Слева – на единичной сфере, справа – развертка на плоскости.

Гармонический состав асимметрии облучения мишени для 6-и конверторов

РФЯЦ-ВНИИТФ РОСАТОМ

14

14

10

Результаты расчетов для 6-ти конвертеров

R _M , мм	1,1						
R _Б , мм	4,5				3,5		
S _K , %	16		6,25		16	6,25	
R _к , мм	1,48		0,92		1,14	0,72	
α_{K}	0,70	0,30	0,70	0,30	0,70	0,70	
Т, эВ	245	230	250	243	271	275	
КПД, %	14,1	10,9	15,2	13,5	20,9	22,3	
КПД _{миш} , %	10,6	8,2	11,4	10,1	15,7	16,7	
Е _{пот} , %	22	39	9	19	19,2	8	
η, %	1,02	1,02	1,25	1,25	4,63	5,55	
δ, %	0,56	0.56	0,68	0,68	2,29	2,75	

$$K\Pi \square = 4\pi R_M^2 \,\overline{j} / P_L$$

 $K\Pi \mathcal{I}_{Muu} = 4\pi R_M^2 \,\overline{j} \,(1 - \alpha_M) \,/ \,P_L$

 $\overline{j} = \frac{\iint j(\theta, \varphi) d\Omega}{4\pi}$

 $j(\theta, \phi)$ – удельный (на единицу поверхности) поток энергии излучения, падающий на мишень $P_L = 500 \text{TBT}$ – полная мощность лазерного излучения, падающего на конвертер снаружи $v_- \approx 0,4$ – коэффициент конверсии лазерного излучения в поток рентгеновского излучения с тыльной стороны конвертора

Из закона сохранения энергии следует, что поток излучения (q_M), падающего на мишень, дается формулой:

$$q_{M} = \sigma T_{M3\pi}^{4} = \frac{\nu_{-}P_{L}}{4\pi R_{B}^{2}} \times \frac{1}{1 - (1 - (1 - \alpha_{M})k^{2})[\alpha_{B} - S_{K}(\alpha_{B} - \alpha_{K})]}$$

Объединение кластеров для облучения 12-ти конверторов

Расположение объективов на мишенной камере https://nn.mk.ru/social/2019/04/24

Расположение 12-и конвертеров на боксе ($S_K = 6,25\%$).

1. Garanin S.G., et al.// Herald of the Russian Academy of Sciences, 2021, Vol. 91, No. 3, pp. 250–260.

Расчеты поля излучения для 12-ти конверторов

Распределение потока излучения на мишени для *k*=1/3; S_K=16 %; α_M=0,25; α_Б=0,85; α_K=0,7. Слева – на единичной сфере, справа – в развертке.

Гармонический состав асимметрии для 12-ти конверторов

Уменьшение радиуса бокса ухудшает симметрию облучения

В отличие от схемы с 6-ю конвертерами среднеквадратичное отклонение падающего потока на мишень остается меньше 1 % и при меньшем радиусе бокса

$$k=1/4$$
 $k=1/3$ $S_{\rm K}=6,25\%$

другие параметры одинаковые: $\alpha_{M}=0,25; \alpha_{E}=0,85; \alpha_{K}=0,7.$

Результаты расчетов для 12-ти конвертеров

R _M , мм	1,1						
R _Б , мм	3,5				4,5		
S _K , %	16		6,25		16	6,25	
R _к , мм	0,81		0,51		1,05	0,65	
$\alpha_{\rm K}$	0,70	0,30	0,70	0,30	0,70	0,70	
Т, эВ	271	256	275	268	245	250	
КПД, %	21,0	16,7	22,2	20,2	14,1	15,2	
КПД _{миш} , %	15,7	12,5	16,7	15,1	10,6	11,4	
Е _{пот} , %	19,2	28,0	7,80	13,0	22	9	
η, %	1,23	1,23	1,39	1,39	0,39	0,54	
δ, %	0,69	0.69	0,76	0,76	0,18	0,21	

В расчетах:

- 500ТВт полная мощность лазерного излучения, падающего на конвертеры,
- 0,4 коэффициент конверсии лазерного излучения в поток рентгеновского излучения с тыльной стороны конвертора.

- Увеличение числа конвертеров улучшает симметрию облучения мишени.
- Уменьшение радиуса бокса приводит к увеличению температуры излучения до *Т_{ИЗЛ}* ≈ 0,27 кэВ при среднеквадратичном отклонении падающего потока на мишень меньше 1 %.

1-D расчеты РФЯЦ-ВНИИТФ двухкаскадной мишени

Расчеты, проведенные по 2D- программе радиационной газовой динамики, подтверждают, что при мощности лазера P_L =500 ТВт в боксе новой конструкции может быть достигнута температура излучения $T_{И3Л} \approx 0,26$ -0,28 кэВ [1].

Такие значения температур наиболее пригодны для сжатия двукаскадных мишеней [2, 3].

1. Чубарешко И.С. и др.//Тезисы доклада на XVII Межд. конф. «Забабахинские научные чтения» (19 – 23 мая 2025, Снежинск). 2. Merritt E.C., et al.// Phys. Plasmas 26, 052702 (2019).

3. Amendt P.A., et al. An Ideal Hohlraum Ignition Platform Using Double-Shell Targets. Report at 42nd EPS Conference on Plasma Physics, Lisboan, Portugal, June 23, 2015.

1-D расчеты двукаскадной мишени с учетом перемешивания

Приведены результаты 1D-расчетов двухкаскадной мишени [1] с $T_f(t)$ из работы [2], выполненных с учетом турбулентного перемешивания и набором констант *k*є-модели [3], которые отвечали двум значениям эмпирического параметра α =0,04 и α =0,07 в выражении для длины проникновения легкого вещества в тяжелое $L_b = \alpha g t^2$, где A – число Аттвуда, g – ускорение, t – время.

N⁰	α	M _{clean} , %	р*, г/см ³	Т _і *, кэВ	$ρ_{max}$, $Γ/cM^3$	Т _{і,тах,} кэВ	W _Q	ή, %	N _{DT}
1	-	100	308	3,1	208	3,7	3,1	44	6·10 ¹⁷
2	0,04	34	270	2,2	223	3,3	1,0	0,6	7,8.1015
3	0,07	15	192	1,8	175	2,3	0,49	0,1	1,4.1015

Примечание: M_{clean} – доля массы DT, свободного от примесей на момент времени t* - максимального сжатия DT; ρ* - максимальна<u>я</u> плотность и T_i* - температура ионов DT на момент t* в расчете без учета разогрева топлива продуктами т.я. реакций; W_Q – запас по зажиганию с учетом потерь энергии в DT-топливе на излучение и электронную теплопроводность [4]; ρ_{max} - максимальна плотность и T_{i,max} - температура ионов DT при горении; ή – выгорание трития; N_{DT} – нейтронный выход.

Эксперименты с двукаскадными мишенями непрямого облучения представляют значительный интерес для изучения физики перемешивания вблизи порога термоядерного зажигания [1].

- 1. Merritt E.C., et al.// Phys. Plasmas 26, 052702 (2019).
- 2. P.A. Amendt, et al. An Ideal Hohlraum Ignition Platform Using Double-Shell Targets. Report at 42nd EPS Conference on Plasma Physics, Lisboan, Portugal, June 23, 2015.
- 3. Неуважаев В.Е. Математическое моделирование турбулентного перемешивания, Издательство РФЯЦ-ВНИИТФ, Снежинск, 2007.
- 4. Бакуркина Е.С. И др. // Ядерная физика и инжиниринг, 2019, том 10, № 3, с. 271–284.

Заключение

Предложен новый вариант схемы прямого-непрямого облучения мишеней ИТС, когда мишень помещается в центре сферического бокса с круговыми конвертерами, нагреваемыми снаружи лазерными пучками мегаджоульный установки. Основное преимущество новой конструкции – отсутствие проблем, связанных с запуском лазерного излучения внутрь бокса через отверстия, которые существуют в схеме сферического бокса с 6-ю отверстиями.

Проведены аналитические 3D-расчеты поля излучения внутри бокса новой конструкции в предположении, что 48 лазерных кластеров фокусируются на внешней поверхности 6-и или 12-и круговых конвертеров, размещенных в стенках сферического бокса. Обе конфигурации реализуемы при размещении 48-и объективов на изготовленной мишенной камере Российской мегаджоульной лазерной установки.

Расчеты показали, что на поверхности сферической мишени, помещенной в бокс с 12-ю конверторами, может быть достигнута температура $T_{_{U3Л}} \approx 0,26-0,27$ кэВ и однородность излучения на уровне 1-2% при эффективности передачи энергии лазера в сферическую мишень до 15% для проектных параметров Российской мегаджоульной лазерной установки.

По-видимому, предложенная конструкция бокса с круговыми конвертерами наиболее пригодна для изучения физики сжатия двукаскадных мишеней, которые для своей работы требуют такие значения температур при высокой однородности поля излучения.

Благодарности

Авторы выражают благодарность Карлыханову Н.Г. и Бакуркиной Е.С. за проведение 1-D расчетов двухкаскадной мишени с учетом спектрального переноса излучения и турбулентного перемешивания по *k* ϵ -модели.

Спасибо за внимание!