

XVII Международной конференции «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ»

Рентгеноспектральная диагностика плотной фемтосекундной лазерной плазмы

Сергей Николаевич Рязанцев

Объединенный институт высоких температур Российской академии наук (ОИВТ РАН), Москва, Россия

19–23 мая 2025 г. Снежинск, Челябинская область, Россия

Кристаллический фокусирующий спектрометр с пространственным разрешением.

Диспергирующий элемент:

Слюда, кварц

Диапазон длин волн (энергий): 0.5 – 20 ангстрем (0.7 – 25 кэВ)

```
Спектральное разрешение: 10<sup>3</sup>-10<sup>4</sup>
```

Пространственное разрешение: ≥ 10 микрометров

Детектор рентгеновского излучения:

- Рентгенофлуоресцентные пластины
- Рентгеновские пленки
- ПЗС-камеры

Общий вид спектрометра

Спектрометр установленный в вакуумной камере с ПЗСкамерой в качестве детектора

Характеризация лазерно-плазменного источника мягкого рентгеновского излучения.

Схема эксперимента

Основной результат

В направлении «по нормали» к поверхности мишени диапазоне 4.75 – 7.3 ангстрем (1.7-2.6 кэВ):

• 8 × 10¹³ фотонов/ср (≈0.03 Дж/ср).

Эффективность конверсии:

≈1.2×10⁻⁴ в единицу телесного угла

S.N. Ryazantsev et al. Plasma Phys. Control. Fusion **64** (2022) 105016 https://doi.org/10.1088/1361-6587/ac8b33

(a) Зарегистрированные спектры

Спёктры с каждого из спектрометров отдельно (нормировано на максимум в пределах спектра)

Функции отклика каждого из спектрометров

Качественная диагностика лазерного контраста фемтосекундного лазерного импульса.

движется с постоянной скоростью v_{exp} [1E7-1E8

Эксперименты по облучению Ar кластеров. Постановка.

Эксперименты по облучению Ar кластеров. Результаты.

Отмеченные спектральные линии соответствуют следующим переходам межу состояниями многозарядных ионов Ar:

- Ly_α 2*p*→1s в водородоподобном (ядро и один электрон) ионе Ar XVIII,
- He_α и He_{int} 1s2p ¹P₁ → 1s^{2 1}S₀ и 1s2p ³P₁ → 1s² ¹S₀ в гелиеподобном (ядро и два электрона) ионе Ar XVII,
- DS диэлектронные сателлиты, обусловленные переходами *nln'l* → 1*sn'l* в гелиеподобном ионе Ar XVII.
- К_α 2*p*→1s в нейтральном Ar

Длина волны, мкм

Спектр, зарегистрированный в ходе облучения газовокластерной Ar струи с размерами кластеров >0.5 мкм

Моделирование спектров. Модель разлета кластера.

Временной профиль ионной плотности:

$$N_i(t) = N_i(0) \left(1 + rac{t}{ au_0}
ight)^{-3}$$
, $N_i(0) = 2 imes 10^{22} \, {
m cm^{-3}}$

Временной профиль ионной температуры в предположении адиабатичности ($T_eV^{\gamma-1} = const. \gamma$ = 1.4 – показатель адиабаты) процесса расширения:

$$T_e(t) = T_e(0) \left(1 + \frac{t}{\tau_0}\right)^{-1}$$

Skobelev I. Yu. et al. Photonics **2023**, 10(11), 1250

Моделирование спектров. Результаты.

Система кинетических уравнений:

Skobelev I. Yu. et al. Photonics 2023, 10(11), 1250

Зависимость отношения интегральных (по времени) концентраций H- и He-подобных ионов Ar от начальной температуры $T_e(0)$ кластера для различных значений параметра τ_0

Таким образом, при наблюдении интенсивной линии **Ly_α** при облучении кластерных мишеней с характерным размеров кластера ~0.1 мкм, можно утверждать, что в области взаимодействия реализовывалась интенсивность *I_{ADK}*. Для ионизации Не-подобно Ar *I_{ADK}*=2.5E21 Bт/см²

Собственный радиационно-столкновительный код.

Общее назначение:

Моделирование излучательных спектров плазмы многозарядных ионов в широком диапазоне температур и плотностей с возможностью проведения расчетов в рамках стационарной и нестационарной моделей, в том числе с учетом внешней накачки.

Учитываемые

процессы:

- Спонтанные радиационные переходы A_{ml}^{ZZ}
- Вынужденное излучение $B_{ml}^{ind}U_{ml}^Z$ или фотопоглощение $B_{ml}^{ads}U_{ml}^Z$
- Столкновительное возбуждение $N_e C_{ml}^{ZZ}(T_e)$ и девозбуждение $N_e V_{lm}^{ZZ}(T_e)$
- Столкновительная ионизация $N_e C \gamma_{ml}^{(Z+1)Z}(T_e)$ и тройная рекомбинация $N_e^2 \Phi_{lm}^{(Z-1)Z}(T_e)$
- Автоионизация $\Gamma_{ml}^{(Z+1)Z}$ и диэлектронный захват $N_e D_{lm}^{(Z-1)Z}(T_e)$
- Фотоионизация $F_{ml}^{(Z+1)Z}$ и фоторекомбинация $N_e R_{lm}^{(Z-1)Z}(T_e)$

Скорости элементарных процессов рассчитаны с использованием программы с Fac

Преимущества по сравнению с аналогами (PrismSPECT)

- Возможность учета состояний полых ионов.
- Возможность учета полевой ионизации (по АДК)

Лазерная плазма под воздействием внешней фотонакачки

Параметры лазерной плазмы:

$$N_e \ge 10^{18}$$
см⁻³ $T_e \ge 50$ эВ

Мотивация исследования

- Появление мощных рентгеновских лазеров на свободных электронах *I*~10¹⁸÷
 10²² Вт/см²
- Исследования в области инерциального термоядерного синтеза

Рентгеновский лазер на свободных

Электронах The European X-ray free-electron laser (XFEL)

Хольраум

Диагностика электронной плотности по отношению He_a/He_{inter}

Р. К. Куликов и др., *Квантовая электроника*, **54**:8 (2024), 483–488 <u>https://doi.org/10.3103/S1068335624602772</u>

Диагностика электронной плотности по отношению He_a/He_{inter}

Типичный вид зависимости

Влияние

Депопуляция возбужденных состояний фотонакачки: Перевод плазмы в рекомбинационное

- Энергия фотона достаточна для ионизации возбужденных
- Основной канал заселения возбужденных состояний – переходы из основного состояния
- Появляется дополнительный канал распада возбужденных состояний

- состояние
- Энергия фотона достаточна для ионизации основного состояния
- Основной канал заселения возбужденных состояний – рекомбинация Н-подобных ионов

Влияние внешней фотонакачки на отношения интенсивностей.

Gabriel A.H., Jordan C. // Case Studies in Atomic Collision Physics. 1972. Vol. 2. P. 209. :

$$a = \frac{I_{1_P}}{I_{3_P}} = K(1 + \frac{F_T I}{A_T}) + \frac{4N_e}{A_T} ((K+1)C(T \to S) + KCi(T))$$

 $C(T \to S)$ – средняя скорость передачи возбуждения из триплетов на A_T – скорость радиационного распада состояния 3P_1 Ci(T) – скорость ионизации триплетных состояний F_T – сечение фотоионизации I – интенсивность накачки

$$K = \frac{C(1 \ {}^{1}S_{0} \rightarrow 2 \ {}^{1}S_{0}) + C(1 \ {}^{1}S_{0} \rightarrow 2 \ {}^{1}P_{1})}{C(1 \ {}^{1}S_{0} \rightarrow 2 \ {}^{3}S_{1}) + C(1 \ {}^{1}S_{0} \rightarrow 2 \ {}^{3}P)} - \text{отношение скоростей заселения синглетов и}$$

Не учтены:

триплетов

- детальная структура уровней конфигураций 1s21,
- более возбужденных состояний типа 1snl
- ступенчатые или каскадные процессы

Р. К. Куликов и др., *Квантовая электроника*, **54**:8 (2024), 483–488 <u>https://doi.org/10.3103/S1068335624602772</u>

Входные параметры для расчета:

- Учитывались ионы от Ar XVI до Ar XIX (Li-, He-, Hподобные, ядра)
- Скорости элементарных процессов рассчитаны с использованием программы cFac
- Общее число состояний 1681
- *T_e* = 500 эВ
- Интенсивность внешнего излучения $0 \div 10^{17}~{
 m Bt/cm^2}$
- Ширина линии накачки б эВ
- Электронная плотность $10^{17} \div 10^{24} \, {
 m cm^{-3}}$

Результаты численных расчетов для энергии фотонов 1000 эВ

Р. К. Куликов и др., *Квантовая электроника*, **54**:8 (2024), 483–488 <u>https://doi.org/10.3103/S1068335624602772</u>

Зависимость отношения интенсивностей резонансной и интеркомбинационной линий в зависимости от а) электронной плотности при различных интенсивностях внешней накачки и б) интенсивности накачки при плотности электронов 10^{21} см⁻³ для энергии фотонов 1 кэВ

Результаты численных расчетов для энергии фотонов 4200 эВ

Р. К. Куликов и др., *Квантовая электроника*, **54**:8 (2024), 483–488 <u>https://doi.org/10.3103/S1068335624602772</u>

Зависимость отношения интенсивностей резонансной и интеркомбинационной линий в зависимости от а) электронной плотности при различных интенсивностях внешней накачки и б) интенсивности накачки при плотности электронов 10^{21} см⁻³ для энергии фотонов 4.2 кэВ

Рентгеноспектральная диагностика является крайне эффективным (иногда единственным) методом диагностики лазерной плазмы, причем позволяет определять не только, собственно, параметры плазмы, но и проводить оценку, как минимум качественную, характеристик лазерного импульса таких как временной контраст и интенсивность на мишени.

Классические методы диагностики (например, определение плотности по **ОТНОШЕНИЮ Не**_а/Не_{inter}) с некоторыми модификациями могут быть использованы для диагностики таких экзотических объектов как фемтосекундная плазма, подвергающаяся воздействию интенсивного коротковолнового излучения.

Экспериментальное наблюдение режима лазерно-индуцированного доминирующего ускорения протонов в многокомпонентной плазме с околокритической плотностью

Сравнение результатов кинетического моделирования с экспериментальными спектрами: (a) с предварительной ионизацией

- Впервые экспериментально продемонстрировано достижение режима лазерноиндуцированного доминирующего ускорения протонов в C₈H₇Cl пикосекундной плазме.
- Показано, что протоны являются единственными ускоренными частицами с положительным зарядом (единственными ионами), когда плазма с плотностью, близкой к критической, подвергается воздействию лазерного импульса с умеренным нормализованным векторным потенциалом. Результаты численного PIC моделирования подтверждают экспериментальные измерения.
- Информация о возможности создания в лазерно-плазменном эксперименте условий для эффективного бесстолкновительного ускорения протонов важна для понимания природы бесстолкновительных процессов, имеющих место в астрофизических и космических средах. Ускоренные таким образом ионы играют важную роль в исследованиях генерации галактических космических лучей посредством диффузионного ударного ускорения, а также в у Sakawa, H. Ishihara, S.N. Ryazantsey et al. Phys. Rev. Цетт. 133, 195102 (2024)

Спасибо за внимание!

Экспериментальное наблюдение спектров Н-подобных ионов с Z≥28

Hollinger,. et al. Nat. Photonics 14, 607-611 (2020). https://doi.org/10.1038/s41566-020-0666-1

В обоих случаях наблюдаются спектральные линии, обусловленные переходами в Н-подобных ионах. Потенциалы ионизации Не-подобного Ni и Ge: ≈10.3 кэв ≈13.5 кэВ

Скорость столкновительной ионизации в Ni.

Временные зависимости концентрации полностью ионизованных атомов(обозначенных как «*nucl.*»), Hподобных и He-подобных ионов в плазме с фиксированными $N_i = 9E22$ см⁻³ (твердотельная плотность) и T_e .

Примеры сопоставления кода с экспериментальными данными.

Мишень из Мд при высоко

Мишень из Si

Мд мишень с высоким контрастом лазерного импульса

Si фольга с плазменным зеркалом