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1. Preliminary remarks

Question 1: what is stochastic mixture?

Stochastic mixture (SM) contains two or more randomly mixed
Immiscible materials, thus it is
occurrence probability.
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1. Preliminary remarks

Question 2: where does SM involve in applications?

In inertial confinement fusion (ICF), the mixture of the fuel and shell
Initiated by the hydrodynamic instability appears, and the radiation
transported through the stochastic fuel-shell mixtures is believed to
play a role in the performance of the fusion pellet.
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1. Preliminary remarks

Question 3: why does it affect the radiation transport?
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1. Preliminary remarks

Question 3: why does it affect the radiation transport?

The opacity of stochastic mixture strongly depends on the mixing,
whose uncertainty greatly exceeds that of species opacity for (p, T).
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For stochastic mixture, a direct solution of radiation transport
equations is forbidden, since the opacity is random for any positions.
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1. Preliminary remarks

Over the past decades, a substantial number of studies have been
performed to understand the radiation transport in stochastic mixtures.
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1. Preliminary remarks

A long-time debatable problem
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Different mixing distributions and sizes do not <E> Different mixing sizes strongly affect
impact the transmission flux and energy density. the transmission flux and energy density.

In this report, we shall provide the definite answer to this issue.
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2. Theoretical method

We have developed a massively-parallel code RAREBIT2D(“RAdiative
tRansfEr in Binary stochastlc mixTures in Two Dimensions”) from scratch.

\

Sampling different physical configurations

RAREBIT2D

) Solving transport equations for each configuration

> Averaging the solutions over the ensemble

Physical observables: ensemble-averaged radiation
transmission flux, material energy density, and temperature
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3. Results and Analysis

Parameter Set 1 (Olson™) Set 2 (Brantley and Martos””)
Domain size L x L (cm?) 1.0x 1.0 10.0 x 10.0
Grid representation rny x n, 2000 x 2000 2000 x 2000
Material 1 density p, (g/em®) 2.7 2.7
Material 2 density p, (g/cm’) 0.1 0.1
Mixing probability p, 0.02-0.2 0.05-0.3
Average particle size (r) (cm) 0.00191-0.019 40 0.087 54-0.700 28
Material 1 absorption opacity o4, (cm™") 4.6-495.1 9.1
Material 2 absorption opacity o4, (cm™") 0.1 0.1
Material scattering opacity o 0 0

Initial material temperature T (keV) 0.003 0.003
Radiation source temperature T; (keV) 0.3 0.3

Level of quadrature set s 16 16

Total simulation time 7 (ps) 5000 20000
Time step d7 (ps) 0.1 0.1
Convergence value of source iteration € 107° 107°
Number of physical configurations N 10 10

Comparison of the parameters used by Olson et al. and Brantely et al.
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3. Results and Analysis

(a) Olson et al., JQSRT 104, 86 (2007)
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(b) Brantely et al., Technical Report (Livermore, CA, 2011)
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We have confirmed the inconsistency between Olson et al. and
Brantely et al. using our RAREBIT2D code.
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3. Results and Analysis

Consider 1D, single-group, steady-state,
and no scattering radiation transport,

gtz 1) + 70 (2) (2, 1) = S(2)

related to
the material
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The ensemble-averaged equations are
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The ensemble-averaged intensity can be
analytically written as
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3. Results and Analysis

Effective optical B L
: Ty =0 -L=—
thickness ;
_ If the number of I, through the domain
If the number of |, through the domain exceeding 1, it is optically thick such
IS less _than 1, _the stochastlc? _mlxtures that the photons most probably
are optically thin, the probability of the interacts with the mixture for multiple
photons interacting with the mixture is times before it finally traverses the
small, thus the influence of the binary domain, thereby the properties of the
stochastic mixture is limited. mixture do really matter.
Physical parameters from Olson et Physical parameters from Brantely et al.,
al., JQSRT 104, 86 (2007) result in Tech. Rep. (LLNL, 2011) result in
optically thin stoc\hastic mixtures! optically thick stochasjtic mixtures!
Y

The previous discrepancy between Olson et al. and Brantley et al.
arises from different optical properties. In this sense, previous results
are basically consistent.
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3. Results and Analysis
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The dependence of the radiation fluxes on the stochastic mixture can
be (in)significant by varying the mixing width (L) and/or opacities (1,).
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4. Summary

For the long-standing disputable problem of the impact of mixing on the
radiation transport, we have made efforts to understand the radiation

transport in stochastic mixtures:

v Confirmed the previous discrepancy between Olson et al. and Brantley et al.
v" Proposed the effective optical thickness as a theoretical criterion.
v Unveiled the discrepancy arises from different optical properties, thus previous

results are basically consistent.

More details can be found in
C.-Z. Gao, et al., Benchmark simulations of radiative transfer in participating

binary stochastic mixtures in two dimensions. Matter and Radiation at Extremes 9,
067802 (2024).

Thanks for your attention!
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