Ташланов Владимир Валерьевич, Бегашев Д. В., Ершов А.В.

19 – 23 мая 2025

Численное моделирование нестационарных детонационных процессов в ударно-волновой трубке с реагирующим веществом - октогеном

Введение

Рис. 1 – Схематическое изображение УВТ неэлектрической системы инициирования [1]. Ударно-волновая трубка (УВТ) является одним из основных элементов неэлектрических систем инициирования, широко применяемых при взрывных работах на земной поверхности, в подземных рудниках и шахтах. УВТ также могут использоваться в системах задействования различных пиротехнических устройств. Функционально УВТ предназначена для передачи к энергонасыщенному материалу (ЭМ) низкоэнергетического инициирующего импульса в виде детонационной волны.

Рассматриваемая в настоящей работе УВТ (рис. 1) представляет собой пластиковую трубку малого диаметра с нанесенным на внутреннюю поверхность канала трубки тонкого слоя взрывчатого вещества (ВВ) - октогена. С целью оптического контроля навески в ВВ добавляют от 1 до 7 % алюминиевой пудры.

Детонационный процесс в УВТ представляет собой самоподдерживающийся ударный разрыв, за фронтом которого непрерывно инициируются реакции термического разложения октогена в конденсированной и газовой фазах вследствие срыва и нагрева частиц реагента продуктами разложения в ударном фронте.

РФЯЦ-ВНИИТФ

POCATOM

^{1.} Неэлектрическая система взрывания на основе ударно-волновой трубки. [Электронный ресурс]. Режим доступа: URL: helpiks.org/7-9370.html. (02.05.2024).

Актуальность

Процессы перехода от медленного горения - дефлаграции к детонационному режиму горения, детонационные волны и многомерные детонационные структуры, имеющие место в УВТ, являются предметом экспериментальных и численных исследований. С точки зрения математического моделирования большой интерес вызывает явление спиновой детонации, возникающей в УВТ с тонким слоем реагента вблизи детонационных пределов и наблюдаемой, например, в трубках диаметром 2÷3 мм с пылевым слоем гексогена [2].

С практической точки зрения при проектировании неэлектрических систем инициирования требуется обеспечивать заданные характеристики и высокую надёжность УВТ, для чего необходимо досконально понимать, как в ней формируются и протекают детонационные процессы. Одним из методов, позволяющих детально на качественном и количественном уровне исследовать нестационарные детонационные процессы в УВТ, является численное моделирование на основе математических моделей многомерных течений химически реагирующих многокомпонентных газовых смесей.

Цель

Проведение вычислительного эксперимента с целью качественного и количественного анализа нестационарных детонационных процессов, протекающих в УВТ с тонким слоем октогена, и установление их основных характеристик и параметров.

^{2.} В. В. Митрофанов, В. А. Субботин. Детонация пылевого слоя взрывчатого вещества в вакуумированных трубках. Физика горения и взрыва, 1998, т. 34, №6. – С. 56-67.

Математическое описание многомерных течений химически реагирующих многокомпонентных газовых смесей

Математическое описание рассматриваемых процессов основывается на уравнениях RANS [3] (Reynolds Averaged Navier-Stokes), уравнении состояния для смеси идеальных газов, модифицированной *k-* модели турбулентности SST (Shear Stress Transport) Ментера [4] и предложенной двухстадийной кинетической модели термического разложения октогена.

Уравнение неразрывности:

$$\frac{\partial \bar{\rho}}{\partial t} + \operatorname{div}(\bar{\rho}\tilde{\mathbf{v}}) = 0; \tag{1}$$

Уравнение сохранения массы компонентов:

$$\frac{\partial \overline{\rho} \widetilde{\omega}_i}{\partial t} + \operatorname{div}(\overline{\rho}_i \widetilde{\omega}_i \widetilde{\mathbf{v}}) + \operatorname{div}(\overline{\rho \mathbf{v}'' \omega_i''} - \overline{D_i^M \rho \operatorname{grad} \omega_i}) = \overline{M_i w_i};$$
(2)

Уравнение сохранения импульса:

$$\frac{\partial(\bar{\rho}\tilde{\mathbf{v}})}{\partial t} + \operatorname{div}(\bar{\rho}\tilde{\mathbf{v}}\otimes\tilde{\mathbf{v}}) + \operatorname{div}(\bar{\bar{p}} + \overline{\rho\mathbf{v}''\otimes\mathbf{v}''}) = \bar{\rho}\bar{\bar{g}};$$
(3)

Уравнение сохранения энергии:

$$\frac{\partial(\bar{\rho}\tilde{h})}{\partial t} - \frac{\partial\bar{P}}{\partial t} + \operatorname{div}\left(\bar{\rho}\mathbf{v}''h'' - \overline{\lambda}\operatorname{grad}T\right) + \bar{\bar{p}}\operatorname{:}\operatorname{grad}\tilde{\mathbf{v}} - \operatorname{div}(\bar{p}\tilde{\mathbf{v}}) = -\sum_{r=1}^{R}\overline{\Delta H_{298,r}^{\circ}w_{r}}; \quad (4)$$

3. Варнатц Ю., Маас У., Диббл Р., Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ / Пер. с англ. Г. Л Агафонова. Под. Ред. П. А. Власова. М.: Изд-во ФИЗМАИЛИТ, 2003. – 352 с.

4. Menter F. R., Kuntz M., Lantry R. Ten years of experience with the SST turbulent model // Turbulence, Heat and Mass Transfer 4. Ed. by K. Hanjalic, Y. Nagano, M. Tummers. Begell House Inc, 2003.

РФЯЦ-ВНИИТФ

POCATOM

Математическое описание многомерных течений химически реагирующих многокомпонентных газовых смесей

Уравнение состояния:

$$\bar{p} = R \sum_{i=1}^{S} M_i^{-1} \left(\bar{\rho} \widetilde{\omega}_i \widetilde{T} + \overline{\rho \omega_i T^{\prime\prime}} \right).$$
(5)

Компоненты $\overline{\rho u_i'' u_j''}$, $\overline{\rho u_j'' \omega_i''}$ и $c_p \overline{\rho u_j'' T''}$ тензоров напряжений Рейнольдса $\overline{\rho v'' \otimes v''}$, $\overline{\rho v'' \omega_i''}$ и $\overline{\rho v'' h''}$ в уравнениях (2) - (4) связаны со средними параметрами течения соотношениями:

$$\overline{\partial u_i'' u_j''} = -\mu_{\rm T} \left(\frac{\partial \widetilde{u}_i}{\partial x_j} + \frac{\partial \widetilde{u}_j}{\partial x_i} \right) + \frac{2}{3} \delta_{ij} \left(\mu_{\rm T} \frac{\partial \widetilde{u}_k}{\partial x_k} + \bar{\rho} \tilde{k} \right); \tag{8}$$

$$\overline{\rho u_j^{\prime\prime} \omega_i^{\prime\prime}} = -D_{\rm T} \bar{\rho} \frac{\partial \tilde{\omega}_i}{\partial x_j}; \quad c_p \overline{\rho u_j^{\prime\prime} T^{\prime\prime}} = -\lambda_{\rm T} \frac{\partial \tilde{T}}{\partial x_j}, \tag{9}$$

где $\mu_{\rm T}$ – турбулентная (вихревая) вязкость по Брэдшоу [4] : $\mu_{\rm T} = \frac{a_1 \overline{\rho} k}{\max(a_1 \widetilde{\omega}, \sqrt{\tilde{S}^2} F_2)}$.

Модель турбулентности SST включает уравнения переноса турбулентной кинетической энергии *k* и удельной скорости диссипации турбулентной кинетической энергии *ω*:

$$\frac{\partial \bar{\rho}\tilde{k}}{\partial t} + \operatorname{div}(\bar{\rho}\tilde{\mathbf{v}}\tilde{k}) - \operatorname{div}[(\mu + \sigma_k\mu_{\mathrm{T}})\operatorname{grad}\tilde{k}] = \tilde{P}_k - \beta^* \bar{\rho}\tilde{k}\widetilde{\omega};$$
(10)

$$\frac{\partial \bar{\rho} \tilde{\omega}}{\partial t} + \operatorname{div}(\bar{\rho} \tilde{\mathbf{v}} \tilde{\omega}) - \operatorname{div}[(\mu + \sigma_{\omega} \mu_{\mathrm{T}}) \operatorname{grad} \tilde{\omega}] = \gamma \frac{\bar{\rho}}{\mu_{\mathrm{T}}} \tilde{P}_{k} - \beta \bar{\rho} \tilde{\omega}^{2} + (1 - F_{1}) D_{k\omega}.$$
(11)

4. Menter F. R., Kuntz M., Lantry R. Ten years of experience with the SST turbulent model // Turbulence, Heat and Mass Transfer 4. Ed. by K. Hanjalic, Y. Nagano, M. Tummers. Begell House Inc, 2003.

РФЯЦ-ВНИИТФ

POCATOM

Уравнения RANS + уравнение состояния для смеси идеальных газов + *k-ω* модель турбулентности SST Ментера (2003) + кинетическая модель горения стехиометрической пропано-воздушной смеси. Автоматический выбор пристеночной функции ALL+.

Численная схема С. К. Годунова: для вычисления конвективных потоков на гранях ячейки используется решение задачи Римана о распаде произвольного разрыва. Линейная реконструкция решения на каждой грани ячейки (шаблон 2-го порядка точности).

Решатель: явная схема 1-го порядка точности по времени.

Начальные условия:	Граничные условия:
<i>T</i> _{г.0} = 298,15 K; <i>P</i> _{г.0} = 101325 Па;	На входе: $\dot{m}_{\rm\scriptscriptstyle BX}=2\cdot10^{-4}$ кг/с ($1\cdot10^{-4}$ с); $T_{\rm\scriptscriptstyle BX}=2936$,3 К;
$\omega_{C_3H_8,0} = 0,06; \omega_{O_2,0} = 0,22; \omega_{N_2,0} = 0,72;$	$V_{\rm BX} = (0,0,0); I_{\rm BX} = 0,01.$
$V_0 = (0,0,0); k_0 = 0; \omega_0 = 0; I_0 = 0,01.$	На стенке: $u_n=0;u_{ au}=0;rac{\partial f}{\partial n}=0,$ где $f\colon\omega_i,T,P,k,\omega$.

Валидация аэрогидродинамического модуля ПК «ЛОГОС»

7

Химические реакции горения стехиометрической пропан-воздушной смеси моделируются одностадийной (глобальной) аррениусовской кинетикой [5]:

$$C_3H_8 + 5(O_2 + 3,762N_2) \xrightarrow{k} 3CO_2 + 4H_2O + 18,81N_2, \Delta H_{298}^\circ = -2043990$$
 Дж/моль. (11)

Скорость изменения молярной концентрации пропана:

$$w_{C_3H_8} = \frac{\partial [C_3H_8]}{\partial t} = -k[C_3H_8][O_2],$$
моль/(м³·с), (12)

где константа скорости химической реакции горения пропана:

$$k = 7 \cdot 10^8 P^{-0,2264} \exp\left(-\frac{E}{RT}\right), \, M^3/(MOЛb·C);$$
 (13)

 $[C_3H_8]$, $[O_2]$ – молярные концентрации пропана и кислорода в смеси соответственно, моль/м³; P – давление в атмосферах; T – термодинамическая температура, K; R = 8,314 – универсальная газовая постоянная, Дж/(моль ·K); $E = 190,3 \cdot 10^3$ – энергия активации, Дж/моль.

Скорости изменения молярной концентрации остальных компонентов:

$$w_{O_2} = 5w_{C_3H_8}; w_{N_2} = 0; w_{CO_2} = -3w_{C_3H_8}; w_{H_2O} = -4w_{C_3H_8}.$$
 (14)

Валидация аэрогидродинамического модуля ПК «ЛОГОС»

Валидация аэрогидродинамического модуля ПК «ЛОГОС»

Основные параметры установившейся детонационной волны в стехиометрической пропано-воздушной смеси.

Источник	<i>D</i> , м/с	<i>Р</i> н, атм	<i>и</i> н, м/с	<i>с</i> _Н ,м/с	р _н , кг/м ³	<i>Т</i> _н , К	
[6] <i>Q</i> _p = -2043154 Дж/моль;	2050,2	22,08	864,0	-	2,056	3654	
с противодавлением; $\gamma_0 = 1,32, \gamma_H = 1,31$, and a second			,		
[7] Стехиометическая смесь	1799,0	18,64	807,0	-	-	2813	
Данная работа * $Q_{\rm p}=-2043990$ Дж/мль; $\gamma_0=1,37,\gamma_{\rm H}=1,24$	1924,5	24,26	794,6	1036,1	2,789	2985	
	TORODANUACT	TH HACCORON		a co susueur	0 1 1%		

Анализ полученных результатов расчёта показывает, что функциональные возможности ПК «ЛОГОС» позволяют корректно моделировать многомерные нестационарные течения химически реагирующих многокомпонентных газовых смесей

с волнами детонации, в том числе и переходные процессы.

6. Семёнов И. В., Уткин П. С. Численное моделирование детонационных процессов в газах: Научно-образовательный курс. – Москва: Учреждение Российской академии наук Институт автоматизации проектирования РАН, 2011. – 69 с.

7. Физика взрыва / Под ред. Л. П. Орленко. – Изд. 3-е переработанное. – В 2 т. Т.1. – М.: ФИЗМАТЛИТ, 2002. – 832 с.

2.2e+0

 $\omega_{C_3H_8}$

Расчётная схема УВТ с октогеном

В качестве объекта исследования рассматривается УВТ изготовления АО НМЗ «Искра» с внешним диаметром УВТ - 3,2 мм, диаметром канала – 1,2 мм и номинальным количеством навески октогена на погонный метр трубки - 17 мг/м.

- Исходная гетерогенная система «октоген + Al» «воздух», в которой при нагреве частиц реагента начинают протекать реакции термического разложения в конденсированной и газовой фазах, в математической модели заменяется модельной гомогенной средой «пары октогена» - «азот», а термическое разложение октогена описывается газофазными реакциями. В навеске не учитывается алюминиевая пудра;
- Рассматривается трёхмерное теплопроводное вязкое турбулентное течение химически реагирующей многокомпонентной газовой смеси;
- Тепло и массообмен с окружающей средой через боковую и правую торцевую поверхности УВТ отсутствует;
- Инициирующий импульс моделируется вдувом горячего газа в ударную трубку с постоянным массовым расходом и ограниченной длительностью.

Механизм и кинетическая модель термического разложения октогена

Рис. 3 – Схема модели самоподдерживающегося процесса горения октогена

Разложение октогена в конденсированной фазе [8]:

при низких скоростях нагрева преобладает экзотермическая реакция:

$$HMX_l \to 4CH_2O + 4N_2O; \tag{15}$$

при высоких скоростях нагрева преимущественно реализуется эндотермическая реакция:

$$HMX_l \to 4HCN + 2(NO_2 + NO + H_2O).$$
 (16)

Наиболее важная из вторичных реакций в конденсированной фазе является реакция:

$$CH_2O + NO_2 \to CO + NO + H_2O.$$
 (17)

Реакция (17) может протекать в пузырьках. Первичные реакции (15) и (16) также могут протекать в газовой фазе с участием паров октогена. При выходе пузырька на поверхность горения пары октогена вместе с продуктами выбрасываются в газовую фазу. Таким образом, вместе с испарением октогена в газовую фазу с поверхности горения, в пузырьках, находящихся в конденсированной фазе, также имеет место его испарение:

$$HMX_l \leftrightarrow HMX_V.$$
 (18)

8. Палецкий А. А. Структура пламени бесхлорных конденсированных систем. – Диссертация на соискание учёной степени доктора физикоматематических наук. Новосибирск, 2016. – 240 с.

РФЯЦ-ВНИИТФ

POCATOM

Механизм и кинетическая модель термического разложения октогена

В работе [8] предложена следующая брутто - реакция газификации октогена:

 $HMX_{l} \xrightarrow{k_{1}} 1,817 \text{ NO} + 1,103 \text{ H}_{2}\text{O} + 0,919 \text{ CO} + 0,905 \text{ HCN} + 0,757 \text{ H}_{2} + 0,508 \text{ N}_{2}\text{O} + 0,421 \text{ N}_{2} + 0,421 \text{ N}$

+ 0,309 NO₂ + 0,345 HMX_V + 0,240 CO₂ + 0,298 CH₂O, ΔH[°]₂₉₈ = -148771 Дж/моль (502341 Дж/кг). (19)

Процесс одновременного разложения и испарения октогена при его газификации в реакционном слое конденсированной фазы рассматривается в работах [8, 9]. Тепловой эффект реакции (19) рассчитан с у чётом скрытой теплоты сублимации октогена $L_{subl} = 185484,1$ Дж/моль.

Скорость изменения глубины превращения октогена в конденсированной фазе:

$$\frac{\mathrm{d}\eta_l}{\mathrm{d}t} = k_1 (1 - \eta_l), \, \mathrm{C}^{-1} \tag{20}$$

эквивалентна скорости изменения молярной концентрации паров октогена в газофазной модели:

$$w_{\text{HMX}_l} = \frac{d[C_4 H_8 N_8 O_8]}{dt} = -k_1 [C_4 H_8 N_8 O_8], \text{ моль/(м3·c)},$$
(21)

где константа скорости химической реакции [10]:

$$k_1 = 1,58 \cdot 10^{11} \exp\left(-\frac{E}{RT}\right), \, \mathrm{C}^{-1};$$
 (22)

 $[C_4H_8N_8O_8]$ – молярная концентрация паров октогена, моль/м³; E = 158687,3 – энергия активации, Дж/моль.

9. Коптелов А. А., Милёхин Ю. М., Баранец Ю. Н. Расчёт теплового баланса в горящем октогене. Физика горения и взрыва, 2011, т. 47, №3. – С. 60-73. 10. Ермолин Н. Е., Зарко В. Е. Механизм и кинетика термического разпожения циклических нитраминов. Физика горения и взрыва, 1997, т. 33, №3. – С. 10-31.

Механизм и кинетическая модель термического разложения октогена

В соответствии с полуэмпирическим методом расчёта состава конечных продуктов взрыва конденсированных ВВ, предложенным Авакяном [7], получено термохимическое уравнение реакции разложения октогена в газовой фазе:

 $HMX_V \xrightarrow{k_2} 0,945 \text{ CO}_2 + 2,603 \text{ CO} + 0,452 \text{ C}(\text{TB}) + 3,507\text{H}_2\text{O} + 0,493 \text{ H}_2 + 4 \text{ N}_2,$

$$\Delta H_{298}^{\circ} = -1780851,3 \,\text{Дж/моль} \,(6013231,8 \,\text{Дж/кг}).$$
 (23)

Скорость изменения молярной концентрации паров октогена:

$$w_{\text{HMX}_V} = \frac{d[C_4 H_8 N_8 O_8]_V}{dt} = -k_2 [C_4 H_8 N_8 O_8]_V, \text{ моль/(м3·c)},$$
(25)

где константа скорости химической реакции [10]:

$$k_2 = 1,58 \cdot 10^{14} \exp\left(-\frac{E}{RT}\right), \, \text{c}^{-1};$$
 (26)

E = 165386,5 - энергия активации, Дж/моль.

Тепловой эффект суммарной реакции термического разложения октогена:

 $\sum_{r=1}^{R} \nu_r \Delta H_{298,r}^{\circ} = 0,345 \cdot (-148771) + 0,655 \cdot (-1780851,3) = -1217783,6 \, \text{Дж/моль} (-4111974,4 \, \text{Дж/кг}).$

Расчётная сетка: узлов – 459921; ячеек – 410400. Размер ячейки: $\Delta x = 10^{-4}$ м, $\Delta y \approx 10^{-4}$ м, $\Delta z \approx 10^{-4}$ м.

Уравнения RANS + уравнение состояния для смеси идеальных газов + *k-* модель турбулентности SST Ментера (2003) + двухстадийная кинетическая модель разложения октогена. Автоматический выбор пристеночной функции ALL+. Численная схема С. К. Годунова. Линейная реконструкция решения на каждой грани ячейки (шаблон 2-го порядка точности). Решатель: явная схема 1-го порядка точности по времени.

Начальные условия:	Граничные условия:
$T_{{\scriptscriptstyle \Gamma}.0}=$ 298,15 K; $P_{{\scriptscriptstyle \Gamma}.0}=$ 227138,9 Па;	На входе: $\dot{m}_{\rm BX} = 3,25 \cdot 10^{-3}$ кг/с (1 $\cdot 10^{-4}$ с); $T_{\rm BX} = 2936,3$ К;
$\omega_{C_4H_8N_8O_8,0} = 0,929; \omega_{N_2,0} = 0,071;$	$V_{\rm BX} = (0,0,0); I_{\rm BX} = 0,01.$
$V_0 = (0,0,0); k_0 = 0; \omega_0 = 0; I_0 = 0,01.$	На стенке: $u_n=0;u_ au=0;rac{\partial f}{\partial n}=0,$ где $f\colon\omega_i$, $T,$ $P,$ $k,$ ω .

РФЯЦ-ВНИИТФ POCATOM

0.035

0.035

0.04

0.04

Vx

Temperature [K] Pressure [Pa] Velocity X [m/s] 3.201232e+03 1.511990e+07 1.393497e+03 2.878662e+03 1.345978e+07 1.226817e+03 2.556091e+03 1.179966e+07 1.060137e+03 2.233521e+03 1.013953e+07 893.457262 1.910950e+03 8.479409e+06 726.777449 1.588380e+03 6.819286e+06 560.097636 1.265809e+03 5.159163e+06 393.417823 943.238987 3.499040e+06 226,73801 620.668501 1.838917e+06 60.058198 298.098015 -106.621614 1.787942e+05

 • V											
CK_HMXv 4.424217e-04		Temperature [K] 3.244779e+03		Pressure [Pa] 5.595537e+07		Velocity X [m/s] 1.84225		X [m/s] 1.842251e+03			
		3.932637e-04			2.917373e+03			4.975740e+07			1.624295e+03
		3.441058e-04			2.589967e+03			4.355943e+07			1.406339e+03
		2.949478e-04			2.262561e+03			3.736146e+07			1.188383e+03
		2.457898e-04			1.935154e+03			3.116349e+07			970.426441
		1.966319e-04			1.607748e+03			2.496552e+07			752.470243
		1.474739e-04			1.280342e+03			1.876755e+07			534.514045
		9.831594e-05			952.936034			1.256958e+07			316.557847
		4.915797e-05			625.529881			6.371608e+06			98.601649
		0			298.123729			1.736380e+05			-119.354549

46 мкс

32 мкс

0.005

0.005

0.005

0.02

0.02

0.02

0.02

0.025

0.025

0.03

0.03

Дефлаграция

стадия

Преддетонационная

Pressure [Pa]

6.847458e+07

6.088553e+07

5.329649e+07

4.570744e+07

3.811840e+07

3.245159e+03

2.917713e+03

2.590267e+03

2.262820e+03

1.935374e+03

РФЯЦ-ВНИИТФ POCATOM

Velocity X [m/s]

1.920204e+03

1.693546e+03

1.466888e+03

1.240230e+03

1.013572e+03

Кумуляция → самовоспламенение (тепловой								
1.55	v		2001111101		1.7517100+05		-110.71704	
	0		298 141137		1 7217160+05		-110 71754	
	4.694774e-05		625.587617		7.762217e+06		106.940391	
	9.389548e-05		953.034098		1.535126e+07		333.598323	
	1.408432e-04		1.280481e+03		2.294031e+07		560.256256	
	1.877910e-04		1.6079270+03		3.052935e+07		786.914188	

взрыв) → пересжатая детонация

	CK_	HI	MXv	Temper	ra	ture [K]	Press	ur	e [Pa]	Velocit	y :	X [m/s]
			3.913075e-04			3.244158e+03			4.859054e+07			1.956345e+03
			3.478289e-04			2.916822e+03			4.321082e+07			1.725659e+03
			3.043503e-04			2.589486e+03			3.783110e+07			1.494972e+03
			2.608717e-04			2.262150e+03			3.245139e+07			1.264286e+03
			2.173931e-04			1.934814e+03			2.707167e+07			1.033599e+03
			1.739145e-04			1.607478e+03			2.169196e+07			802.912929
			1.304358e-04			1.280142e+03			1.631224e+07			572.226435
			8.695723e-05			952.806614			1.093253e+07			341.539941
,			4.347862e-05			625.470745			5.552810e+06			110.853446
			0			298 134876			1.730939e+05			-119.833047

Пересжатая детонация (взаимодействие поперечных детонационных волн)

РФЯЦ-ВНИИТФ РОСАТОМ

Спиновая детонация, «шлейф» спина

РФЯЦ-ВНИИТФ РОСАТОМ

Достоверность результатов численного моделирования детонационных процессов в УВТ

Схема задействования и регистрации опытов

- А1 электрическая схема
- G1 генератор импульсов
- GB1 источник питания
- Р1...Р5 осциллограф цифровой

Длина волновода и расположение фотодиодов различны в зависимости от номера опыта и указаны в таблице Расположение фотодиодов по отношению к осциллографам: №№1 – 4 к Р2, №№5 – 8 к Р3, №№9 – 12 к Р4, №№13 – 16 к Р5.

№ф	X, MM	лабораторный макет №1				X, MM	лабора	аторный макет №2			
1	7	Δх, мм	∆t, мкс	v, м/сек	9	7	Δх, мм	∆t, мкс	v, м/сек		
2	57	50	26	1923	10	57	50	30	1667		
3	107	50	30	1667	11	107	50	32	1563		
4	157	50	24	2083	12	157	50	25	2000		
5	167				13	167					
6	217	50	29	1724	14	217	50	29	1724		
7	267	50	27	1852	15	267	50	27	1852		
8	317	50	29	1724	16	317	50	28	1786		

Nº⊤	х, мм			
1	7	Δx , MM	Δt , мкс	<i>D</i> , м/с
2	43	36	35,5	1014
3	45	2	1,0	2000
4	57	12	7,0	1714
5	107	50	30,5	1640
6	157	50	30,0	1667
7	167	10	6,0	1667
8	217	50	30,5	1640
9	267	50	30,0	1667
10	317	50	30,5	1640

Достоверность результатов численного моделирования детонационных процессов в УВТ

Скорость детонации в УВТ (эксперимент: \emptyset 0,6 мм, октоген + 5%Al, m = 5 ÷ 6 мг/м; расчёт: \emptyset 0,6 мм, октоген, m = 5 мг/м).

	Эксперимент [2]		Расчёт					
Газ	<i>Р</i> ₀ , Па	<i>D</i> , м/с	Газ	<i>Р</i> ₀ , Па	<i>D</i> , м/с			
Воздух	10 ⁵	1540	Азот	2,5·10 ⁵	1632			
П р и м е ч а н и е – Признаки спина не обнаружены [2]; В расчёте наблюдается галопирующая детонация								

Установившаяся галопирующая детонация

2. В. В. Митрофанов, В. А. Субботин. Детонация пылевого слоя взрывчатого вещества в вакуумированных трубках. Физика горения и взрыва, 1998, т. 34, №6. – С. 56-67.

Анализ результатов численного моделирования

Анализ результатов расчётов позволяет сделать следующие выводы:

- <u>Спиновая детонация</u> в УВТ возникает вблизи пределов детонации в соответствии со схемой: инициирование дефлаграции → самоускорение дефлаграции, кумуляция слабых ударных волн, возбуждаемых фронтом пламени → самовоспламенение (тепловой взрыв) → возникновение и взаимодействие поперечных детонационных волн по схеме распада произвольного разрыва (пересжатая детонация) → возникновение спиновой детонации как динамически устойчивого автоколебательного процесса с конфигурацией «шлейф» спина + «голова» спина + фронт детонации»;
- <u>«Голова» спина</u> локализованная вблизи стенки зона химической реакции с аномальным давлением, вращающаяся вокруг оси волновода одновременно с поступательным движением детонационного фронта и обусловленная дефицитом скорости химической реакции;
- <u>«Шлейф» спина</u> возникающая за детонационным фронтом поперечная акустическая волна, вытянутая вдоль образующей ударной трубки и вращающаяся вместе с «головой» спина. Существование такой волны согласуется с решением волнового уравнения для радиальных и тангенциальных колебаний объема продуктов горения в волноводе. Это решение описывает вращение фазовой пучности давления газа при сложном колебании с некоторой поперечной скоростью (теория акустической детонации Мансона - Тейлора - Фэя - Чу) [11 - 13].

^{11.} Солоухин Р. И. Детонационные волны в газах. УФН. Т. LXXX, вып. 4, 525. (1963).

^{12.} Солоухин Р. И. Физические исследования газов с помощью ударных волн. УФН. Т. LXVIII, вып. 3, 513. (1959).

^{13.} Войцеховский Б. В., Митрофанов В. В., Топчиян М. Е. Структура фронта детонации в газах. – Новосибирск: Издательство СО АН СССР, 1963.

Анализ результатов численного моделирования

Параметры установившейся в УВТ спиновой дето	онации:	
Диаметр УВТ <i>d</i> :	1,2	ММ
Погонная плотность октогена:	17	мг/м
Начальное давление Р _{со} :	0,227	МПа
Средняя скорость детонации:	1654	м/с
Давление в «голове» спина:	75	МПа
Температура в «голове» спина:	2455	Κ
Среднее давление на изоповерхности М = 1:	18,6	МПа
Средняя температура на изоповерхности М = 1:	2207	K
Шаг спина $\frac{L}{\pi d}(L)$:	1,0345 (3,245∙ <i>d</i>)	
Угол наклона спина к образующей УВТ $\operatorname{arcctg}\left(rac{L}{\pi d} ight)$:	44 ^c)
Частота вращения спина:	421052	Гц
Тангенциальная скорость «головы» спина близка к скорости детонации.		

Поверхности *Р и Т* построены по уровню M = 1

Выводы

- Предложена математическая модель нестационарных детонационных процессов в УВТ со слоем октогена, основанная на уравнениях RANS, уравнении состояния для смеси идеальных газов, модифицированной к-ю модели турбулентности SST Ментера и двухстадийной кинетической модели термического разложения октогена, включающей прямые химические реакции первого порядка в конденсированной и газовой фазах.
- На основе предложенной математической модели изучаемых процессов в расчетах воспроизведен режим детонации с одноголовым спином, получены данные об основных параметрах спинового режима детонации в УВТ Ø1,2 мм с навеской октогена 17 мг/м.
- Аанализ результатов численного моделирования показывает, что в рассматриваемой УВТ спиновая детонация возникает в соответствии со схемой: инициирование дефлаграции

 самоускорение дефлаграции, кумуляция слабых ударных волн, возбуждаемых фронтом пламени
 самовоспламенение (тепловой взрыв)

 возникновение и взаимодействие поперечных детонационных волн по схеме распада произвольного разрыва (пересжатая детонация)

 возникновение спиновой детонации как динамически устойчивого автоколебательного процесса с конфигурацией «шлейф» спина + «голова» спина + фронт детонации»;
- Скорость спиновой детонации, определенная по результатам расчётов, удовлетворительно согласуется с экспериментальными данными по измерению скорости детонации в рассматриваемой УВТ.