

ИТПМ СО РАН

Лаврук С.А., Афанасенков А.А.

Физико-математическое моделирование распространения гетерогенной детонации по слою газовзвеси частиц алюминия

Снежинск, Россия 19–23 мая 2025 г.

XVII Международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ»

Актуальность

Интерес к изучению механизмов горения частиц алюминия связан с участившимися количеством несчастных случаев на производствах, где происходит изготовление и обработка алюминиевых изделий, в частности авиационная, автомобильная и химическая промышленности.

Разработка приведенных моделей актуально с точки зрения быстродействия реализуемых расчетов.

Количество взрывов металлической пыли по годам Фильтр до и после взрыва алюминиевой пыли

Цель работы

- Тестирование приведенной кинетики детонационного горения частиц алюминия;
- Исследование распространения детонации в канале, где часть канала заполнена горючей смесью алюминия в воздухе.

Физико-математическая модель

Уравнения Эйлера для описания слабозапыленной реагирующей среды

$$\boldsymbol{W} = \begin{pmatrix} \boldsymbol{W}_1 \\ \boldsymbol{W}_2 \\ \boldsymbol{W}_3 \end{pmatrix} \qquad \boldsymbol{F} = \begin{pmatrix} \boldsymbol{F}_1 \\ \boldsymbol{F}_2 \\ \boldsymbol{F}_3 \end{pmatrix} \qquad \boldsymbol{G} = \begin{pmatrix} \boldsymbol{G}_1 \\ \boldsymbol{G}_2 \\ \boldsymbol{G}_3 \end{pmatrix} \qquad \boldsymbol{\Gamma} = \begin{pmatrix} \boldsymbol{\Gamma}_1 \\ \boldsymbol{\Gamma}_2 \\ \boldsymbol{\Gamma}_3 \end{pmatrix}$$

Индексы:

- 2 частицы алюминия,
- 3 наноразмерные
- частицы оксида

алюминия

$$\rho_{i} = \rho_{ii}m_{i} \qquad m_{1} = 1 - m_{2} - m_{3} \qquad E_{2} = c_{2}T_{2} + 0.5(u_{2}^{2} + v_{2}^{2}) + Q_{23}$$

$$\rho_{22} = \text{const} \qquad \rho_{33} = \text{const} \qquad E_{3} = c_{3}T_{3} + 0.5(u_{3}^{2} + v_{3}^{2})$$

Газовая фаза

$$W_{1} = \begin{pmatrix} \rho_{1} \\ \rho_{02} \\ \rho_{Alox} \\ \rho_{N2} \\ \rho_{1}u_{1} \\ \rho_{1}v_{1} \\ \rho_{1}E_{1} \end{pmatrix} F_{1} = \begin{pmatrix} \rho_{1}u_{1} \\ \rho_{02}u_{1} \\ \rho_{Alox}u_{1} \\ \rho_{N2}u_{1} \\ \rho_{1}u_{1}v_{1} \\ \rho_{1}u_{1}v_{1} \\ \rho_{1}u_{1}F_{1} + pu_{1} \end{pmatrix} G_{1} = \begin{pmatrix} \rho_{1}v_{1} \\ \rho_{02}v_{1} \\ \rho_{Alox}v_{1} \\ \rho_{N2}v_{1} \\ \rho_{1}u_{1}v_{1} \\ \rho_{1}u_{1}v_{1} \\ \rho_{1}u_{1}E_{1} + pu_{1} \end{pmatrix}$$
$$\Gamma_{1} = -(\Gamma_{2} + \Gamma_{3})$$
$$R = \frac{R_{un}}{\rho_{1}} \left(\frac{\rho_{0}}{\mu_{0}} + \frac{\rho_{Alox}}{\mu_{Alox}} + \frac{\rho_{N}}{\mu_{N}} \right) P = \rho_{1}RT_{1}$$
$$E_{1} = \frac{(u_{1}^{2} + v_{1}^{2})}{2} + c_{v,1}T_{1} + \xi_{Alox}Q_{Alox}$$

Частицы алюминия и оксида алюминия

$$W_{i} = \begin{pmatrix} \rho_{i} \\ \rho_{i}u_{i} \\ \rho_{i}v_{i} \\ \rho_{i}E_{i} \end{pmatrix} F_{i} = \begin{pmatrix} \rho_{i}u_{i} \\ \rho_{i}u_{i}^{2} \\ \rho_{i}u_{i}v_{i} \\ \rho_{i}u_{i}V_{i} \\ \rho_{i}u_{i}E_{i} \end{pmatrix} G_{i} = \begin{pmatrix} \rho_{i}v_{i} \\ \rho_{i}u_{i}v_{i} \\ \rho_{i}v_{i}^{2} \\ \rho_{i}v_{i}E_{i} \end{pmatrix}$$

$$i=2,3j$$

$$\Gamma_{2} = \begin{pmatrix} -(J_{2AI2O3} + J_{2AI0x}) \\ f_{2x} - (J_{2AI2O3} + J_{2AI0x})u_{2} \\ f_{2y} - (J_{2AI2O3} + J_{2AI0x})v_{2} \\ q_{2} + f_{2x}u_{2} + f_{2y}v_{2} - (J_{2AI2O3} + J_{2AI0x})E_{2} \end{pmatrix}$$

$$\Gamma_{3} = \begin{pmatrix} J_{2AI2O3} \\ f_{3x} + J_{2AI2O3}u_{3} \\ f_{3y} + J_{2AI2O3}v_{3} \\ q_{3} + f_{3x}u_{3} + f_{3y}v_{3} + J_{2AI2O3}E_{3} \end{pmatrix}$$

$$E_{2} = \frac{(u_{2}^{2} + v_{2}^{2})}{2} + c_{v,2}T_{2} + Q_{23}$$

$$E_{3} = \frac{(u_{3}^{2} + v_{3}^{2})}{2} + c_{v,3}T_{3} = \int_{0}^{0} \frac{(u_{3}^{2} + v_{3}^{2})}{2} + \int_{0}^{0} \frac{(u_{3}^$$

٠ ,

Реакция горения частиц алюминия

Допущения: µаюх=const= µо2
$$Q_{23}=Q_{max}$$

$$J_{2} = \begin{cases} 0, T_{2} < T_{ign} \\ \frac{1}{\tau_{20}} \rho_{2} (d_{0} / d_{2})^{\theta} \exp(-E_{a} / R_{un}T_{2}), T_{2} > T_{ign}, \rho_{0} > 0 \\ 0, \rho_{0} = 0 \end{cases}$$

$$J_{2Alox} = \begin{cases} 0, T_{1} < 3500K \\ J_{2}(1 + \mu_{02} / 2\mu_{Al}), T_{1} \ge 3500K \end{cases}$$

$$J_{2Al2O3} = \begin{cases} J_{2}(1 + 3\mu_{02} / 4\mu_{Al}), T_{1} < 3500K \\ 0, T_{1} \ge T_{3e} \end{cases}$$

Воспламенение и горение частиц алюминия в условиях детонации

Температура воспламенения микроразмерных частиц в динамических условиях в УВ

$$T_{ign} \approx T_{melt} = 930 \mathrm{K}$$

4AI+3O₂→2AI₂O_{3.} T₂<3500K, Q₂₃=15 МДж/кг

AI+O₂ \rightarrow 2AIO , T₂>3500K, Q_{Alox}=Q₂₃-Q_{2Alox}, Q_{2Alox}= 4.5 МДж/кг

Межфазные взаимодействия

$$\vec{f}_{i} = \frac{3m_{i}\rho_{11}}{4d_{i}}c_{Di} |\vec{u}_{1} - \vec{u}_{i}|(\vec{u}_{1} - \vec{u}_{i})$$
$$q_{i} = \frac{6m_{i}\lambda_{1}}{{d_{i}}^{2}} \operatorname{Nu}_{i}(T_{i} - T_{1})$$

Закон сопротивления частиц в сверхзвуковом потоке (Бойко В.М., Папырин А.Н. и др., 1997)

$$c_{Di}(\operatorname{Re}_{i}, M_{1i}) = (1 + \exp(-\frac{0.43}{M_{1i}^{4,67}}))(0.38 + \frac{24}{\operatorname{Re}_{i}} + \frac{4}{\sqrt{\operatorname{Re}_{i}}})$$
$$\operatorname{Re}_{i} = \frac{\rho_{11}d_{i} \left| \vec{u}_{1} - \vec{u}_{i} \right|}{\mu_{1}} \quad M_{1i} = \frac{\left| \vec{u}_{1} - \vec{u}_{i} \right| \sqrt{\rho_{11}}}{\sqrt{\gamma_{1}p}} \quad \operatorname{Nu}_{i} = 2 + 0.6 \operatorname{Re}_{i}^{1/2} \operatorname{Pr}^{1/3}$$

Численная технология и тестирование алгоритма

Численная технология основана на применении схемы TVD Хартена-Лакса для газовой фазы и схемы Джентри-Мартина-Дэйли

ТЕСТИРОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ГЕТЕРОГЕННОЙ ДЕТОНАЦИИ

Скорость детонационной волны

С увеличением загрузки частиц происходит сохранение давления в поперечных волнах на уровне 45-55 атм и снижение давления вне поперечных волн с 40 атм для ρ₂=300 г/м³ до 25 атм для ρ₂>600 г/м³

ТЕСТИРОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ГЕТЕРОГЕННОЙ ДЕТОНАЦИИ Размер детонационной ячейки

алюминий-кислород ρ_2 =1.3 кг/м³

алюминий- воздух ρ_2 =450 г/м³

Давление в тройных точках колеблется в диапазоне 100-110 атм. Расчеты подтверждают данные других авторов, что на размер детонационной ячейки влияет размер частиц. Для субмикронного диапазона частиц ячеистая структура может становиться нерегулярной

Тестирование математической модели гетерогенной детонации

Влияние размера частиц на размер детонационной ячейки согласуется с экспериментальными и расчетными данными других авторов. Сравнение по скорости детонации для взвесей различной дисперсности и различной загрузки показало хорошее согласование с данными других авторов

Постановка задачи

- Частицы алюминия диаметром d₂ =0.3, 1 и 3.5 мкм; плотностью ρ₂=200...800г/м³;
- В ходе исследования варьировалась высота слоя h_1

Расчетная схема

Режимы течения.

Варьирования высоты слоя реагирующей смеси

*d*₂=1мкм, *ρ*₂=450г/м³

h₁=20 см, D=1.64 км/с

h₁=15 см, D=1.64 км/с

h₁=10 см, D=1.53 км/с

h₁=5 см, D=1.36 км/с

С уменьшением размера высоты слоя смеси происходит уменьшение скорости фронта.

Режимы течения.

Варьирования высоты слоя реагирующей смеси

С уменьшением величины слоя происходит локальный срыв детонации и восстановление течения за счет сильной поперечной волны, распространяющейся по каналу.

Режимы течения. Распространение детонации без срыва

Видно, что для обоих случаев на границе раздела фаз образуется гибридная структура из неустойчивости Кельвина-Гельмгольца и Рихтмайера-Мешкова, с образованием грибооразных структур.

Режимы течения.

«Псевдодетонационное» распространение

В ходе распространения происходит локальный срыв детонации с последующим реинициированием детонации от «маховской» конфигурации от ударной волны, распространяющейся в верхней части канала.

Режимы течения. Срыв детонации

h₁=2 см, D=1.05 км/с ρ_2 =200г/м³

За фронтом лидирующей ударной волны практически отсутствуют градиент плотности, на границе двух фаз. На профиле плотности видно, что частицы алюминия не сгорают за фронтом лидирующей ударной волны, а образуют р-слой и медленно реагируют за лидирующим фронтом. Плотность р-слоя не превышает 1.1 кг/м³, что близко к плотности газовой фазы.

Выводы

- Методами численного моделирования проведено тестирование приведенной кинетической схемы детонационного горения частиц алюминия в воздухе, которая учитывает образование газообразных субокислов алюминия и частиц конденсированного оксида алюминия.
- Проведено тестирование численного алгоритма с применением методов параллельного программирования на основе библиотеки OpenMP, показавшее ускорение до 16 раз на 30 потоках.
- Проведены расчеты двумерных течений ячеистой детонации взвесей алюминия в воздухе в плоском канале при различных размерах частиц и различной загрузки. Получено хорошее совпадение с данными других авторов.
- Получены критические условия распространения детонации при распространении детонации по слою частиц.
- Основной механизм восстановления детонации в рассмотренных случаях является отраженная от верхней стенки волна сжатия.
- Срыв детонации получен при критических значениях концентраций частиц.

Спасибо за внимание!