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Ⅰ Motivation

Multi-material and nonlinear hydrodynamic instability and mixing is significant to ICF 

Diffusion（velocity disequilibrium）is a dominant mixing mechanism in gas-filled capsule

[1] A.B. Zylstra, PRE, 2018.  [2] Vold E, POP, 2022. 

 Temperature~keV plasma transport（viscosity/mass diffusion）impact mix development [1,2]

Atomic mix

Grain mix

ICF implosion

• HDC/DT grain→atomic

• D/T atomic

High explosive

• HMX/Void grain mix

• Reactant/product atomic mix
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Ⅰ Motivation

 The ion temperature separation affects mixing development and  fusion reaction

[1] Haines B.M., et al., NC, 2020.  [2] Rinderknecht H.G., et al., PRL, 2015. [3] Zhang C., et al., JCP, 2022. 

Grain mix

MARBLE exp[1]

Atomic：reaction in ion temperature diseq.

• OMEGA：D3He exp. [2]

• SG：Obtained evidence for temperaure separation betweem  D-
ion T-ion（~4keV）

 In Eulerian framework ion-temp. equilibrium causes non-physical oscillation at material 
interface

Non-physical 
oscillations [3]

Mat. 1 Mat. 2

Mat. 2Mat. 1

grid interface
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Ⅰ Motivation

 Traditional ICF codes（xRAGE/HYDRA/LARED-S etc.）rely on 

one-fluid equilibrium hydrodynamic equations

 Equilibrium models fail to capture mechanical/thermal 

disequilibrium between different ion species  
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Ⅰ Motivation

Baer-Nunziato model not applicable
• Only grain mix

• Ion-electron equilibrium

Two-fluid model not applicable
• Only atomic mix

Muti-component disequilibrium model

Requirements：

I. Physical components

Viscosity, heat conduction, ion-electron temp. 

diseq.,  ion-ion mechanical/thermal diseq.

II. 1st & 2nd law of thermodynamics

III. Reduction to classical models

IV. Unified formulation for atomic and grain mix

Traditional models New model

[1] M.R. Baer, J.W. Nunziato, 1986. [2]Braginskii S. I., Reviews of Plasma Physics, 1965.
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Ⅱ Model formulation 

14-eqn HED-BN model

Atomic/grain relaxation time evaluation

9-eqn BNZ model
Unified 

formulation for 
atomic/grain mix

Moment and 
spatial avg.

Effective 
relaxation

One-fluid 
diffusion model

Closure

BGK[1]

Spatial
Characteristic 

Asymp. analysis

We obtain the HED-BN model by means of moment- and spatial- averaging of the BGK model. The 14-
eqn HED-BN model is then reduced by asymptotic analysis with some relaxation times as perturbation
parameter. The reduced models can deal with velocity/temperature diseq. between ion-electron and
different ion species.

[1] J.R. Haack, et al., JSP, 2017. 
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Ⅱ Model formulation 

r = lk，l :ion/electron，k:component index

 Key step 1：derivation of the HED-BN model by moment- and spatial- averaging of the BGK model.

diff. comp.
ion-ion

elec-elec
Volume col.
(atomic mix)

Same comp.
ion-ion

elec-elec

Same comp.
ion-elec

diff. comp.
ion-ion

elec-elec
Surface col.
(grain mix)

ion

electron
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Ⅱ Model formulation 

 Key step 1：derivation of the HED-BN model by moment- and spatial- averaging of the BGK model.

Grid cell

DT
Te1

HDC
Te2

Why do we need two electron temperatures?

• For describing sub-grid temperature distribution

• Maintain neutrality 
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Ⅱ Model formulation 

Mass balance

Momentum balance

Energy balance

Volume fraction

 Grain mix between different materials

 14 equations

 Key step 1：derivation of the HED-BN model by moment- and spatial- averaging of the BGK model.
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Ⅱ Model formulation 

 Key step 2：Evaluate ICF mechanical/thermal relaxation times and determine the perturbation 

parameter for asymptotic analysis.  

Material 
2

Material 
1

x

t

O

shockshock

Contact

• Mechanical relax. time (density, wave speed, grain size) 

• Temperature relax. time (density, heat conuctivity, grain size) 

For atomic mix evaluate with coulomb collision For grain mix evaluate with 
continuum mechanics

• Relaxation rate of mean velocities（Braginskii,1965）

• Relaxation rate of temperatures（Huba,2014）
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Ⅱ Model formulation 

• Relax times in grain mix: thermal >> mechanical(velocity, pressure)

（L=1μm, T<1keV, ~ 3 orders）

• elec-ion relaxation times : mean velocity << temperature 

• Ion-elec. and ion-ion temperature relax time maybe of the same order 

1keV, 0.1g/cc,  τie/τii=8（CD） τie/τii=3（AlD）

L=1 μm

C-D

◆ Perturbations: mechanical relaxation time in grain mix, ion-elec. mean velocity relaxation time in atomic mix

 Key step 2：Evaluate ICF mechanical/thermal relaxation times and determine the perturbation 

parameter for asymptotic analysis.  
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Ⅱ Model formulation 

 Key step 3： By asymptotic analysis of the 14-eqn HED-BN model，one obtains the following 
approximations

◆ At the material interface, electron pressure relaxation rate >> ion pressure relaxation rate

◆ Ion-electron momentum exchange is reduced to be a gradient term from a relaxation term

◆ The volume fraction equations for ions and electrons are reduced to be the same equation
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Ⅱ Model formulation 

Pressure relaxation → variation of αr

Atomic mix

Volume fraction undefined

Grain mix

→ Effective pressure relaxation

→ Pressure fractionVolume fraction

 Key step 4： By introducing an effective pressure relaxation to the atomic mix，we obtain a 

unified formulation for both grain and atomic mix

 The effective unified model can be reduced to the classical two-fluid model

Pressure relaxation undefined
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Ⅱ Model formulation 

 Key step 5： Reduce multi-velocity to sing-velocity model with closure relation

Grain mix

Atomic mix

• Neglect second-order terms of diffusion velocity wk

• Close wk  with the Fick’s law

pressure

 Diffusion velocity makes a non-negligible contribution to mixture 
momentum equation (especially for compressible flows) 

 Neglecting the diffusion velocity contribution violates 2nd law

Neglecting 
diffusion 
velocity

[1] A.W Cook, POF, 2009. [2] Zhang C., PRE, 2023.
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Ⅱ Model formulation 

[1] Zhang C., et al., JCP, 2022. [2] Zhang C., et al., JCP, 2023. [3] Zhang C., et al., PRE, 2023. [4] Zhang C., arXiv 2408.15531.

◆ Hyperbolic, disequilibrium, thermodynamically compatible,  reduction to classical models

Different levels of relaxations lead to a hierarchy of disequilibrium models
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Ⅱ Model formulation : examples

 Reduce to Baer-Nunziato model if neglect electron

 Reduce to Zeldovich model for single fluid

 Repects 2nd law

9 equations, 2 velocities, 4 pressures, 4 temperatures

BNZ (Baer-Nunziato-Zeldovich) model
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8-eqn model

Ⅱ Model formulation : examples

5-eqn model

8 equations, 1 velocities, 

4 pressures, 4 temperatures

5 equations, 1 velocities, 

2 pressures, 2 temperatures
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 The proposed model is a hyperbolic-parabolic-relaxation system solved by the fractional step method

Hyperbolic

• 5th order Spatial reconstruction MLP

• Free of spurious oscillations

• Volume fraction positivity（N≥3）

• Interface-sharpening

Parabolic

• Explicit method LIM

(V.T. Zhukov, Mat. Model. 22 

(2010).)

Relaxation

• Efficient fixed-point iteration

1. Zhang C., et al, JCP, 2022; Zhang C., et al, JCP, 2023.
2. Menshov I., Zhang C., 2021, WCCM-ECCOMAS.
3. Zhang C., et al., J. Sci. Comput., 83(31) (2020) .
4. Zhang C., et al., Comput. & Fluids. 236(2022)105311.

Ⅱ Model formulation : numerical methods



20

Grid 1400×400

WENO5
Coralic,JCP,2014

 Hydrodynamic part

Better resolution than WENO 

S. Galera, et al. JCP 2010 

Our results

Ⅲ Model verification and validation

Our results

Our method solves the entire 
Composite Riemann problem [1,2]

VOF/THINC only 
solves Riemann 
problem at the grid 
interface

Interface

Grid

CRP* THINCMUSCL
CRP* THINCMUSCL

Better resolution than THINC[1] Menshov I., Zhang C., 2021, WCCM-ECCOMAS.
[2] Zhang C., Menshov I., 2019, AMC
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 Heat conduction, mass diffusion, viscosity, and LIM efficiency

Multi-material heat conduction part achieves convergence 

Ⅲ Model verification and validation

Hydro. + mass diff. 2nd order

For electron heat conduction 

computation time of LIM is 50% 

of that of PCG

Computation time

Hydro. + viscosity 2nd order
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Ⅲ Model verification and validation

T
(M

K
)

 Transport parameters
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Paquette CC
Paquette SSCP

Plasma shock tube with 

ion-electron relaxations

Plasma diffusivity

[1] Sangam, et al., JCP, 444 (2021) 110565.  [2] Clérouin, et al. EPL, 89(1998).  [3]Paquette, et al. Astrophys. J. Suppl. Ser., 61 (1986).

The disequilibrium model

well captures the velocity

disequilibrium

Plasma viscosity
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Ⅲ Model verification and validation

xRAGE

No visc./diff.

LARED-S 

2nd order

2400

LARED-S

5th order

2400

LARED-S 粘性

xRAGE 

With visc./diff.
 Our results agree well with

the xRAGE code

LARED-S

5th order

1200

[1] Vold E., et al., POP, 2021.

 Temperature = 1keV

 Acceleration = 2.1×1019cm/s2

 Wavelength = 10.24μm、perturbation = 3%

 RTI at ICF deceleration stage
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Ⅲ Model verification and validation

有粘无扩散

物理时间0.3ns

无粘无扩散

（原LARED-S）
有粘无扩散

有粘有扩散初始条件

有粘无扩散无粘无扩散

 Numerical results in spherical geometry

◆ The plasma diffusion affects the RTI 

development (characteristic wavelength = 10μm)

RT growth rate（Vold E., POP2020）
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Ⅲ Model verification and validation

无粘无扩散 有粘无扩散
 The simulation results agree with exp. results for the laser-ablation of HMX target

Void interface Interface velocity

Cao Z., Chu G., Ma X., et al. Visualizing pore collapse in explosive using X-ray picosecond tracking imaging, PRL, under review.

side top

Laser
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Ⅲ Model verification and validation

 Advantage1 : faster convergence

Equilibrium 4-
eqn model[1]

Equilibrium 5-eqn model[2]

Our results

Convergence solution

CH 
#2

CH 
#1 Laser

Equilibrium 4-
eqn model[1]

Equilibrium 5-
eqn model[2]

[1] Lemartelot S., Int J Multiphas Flow, 2014. [2] Beig S.A., JCP, 2015. [3] Zhang C., et al., JCP, 2022.

Our model[3]

 Our disequilibrium model has numerical advantage over traditional one-fluid model

 Advantage1 : free of oscillation
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Ⅳ Application (1): disequilibria in grain mix

Characteristic length = 0.1μm

Characteristic length = 10μm

• Temperature

• Temperature

• velocity

• Velocity

α1 volume fraction

y1 mass fraction

α1 volume fraction

y1 mass fraction

◆ BNZ model

◆ HDC/D in grain mix

◆ Component separation 

after shock

HDC(4%)

D(96%)
HDC

Laser

 Ablation shock hits the grain mixture（Characteristic length = 10μm， temperature 
separation = 1MK， velocity separation = 10km/s）
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Ⅳ Application (2): disequilibria in atomic mix

CH
I=2E14W/cm2

HDC
I=2E14W/cm2

CH
I=5E13W/cm2

CH
I=2E14W/cm2

Before SC Before SC

Before SC

After SC

 Ion temperature separation is more significant for high laser power and 

implosion velocity 

◆ Ion temperature separation after SC ~ 3keV

 Our model resolves temperatures of different ion species and electrons in atomic mix of ICF 

T relax. time

Implosion time

SC = shock convergence
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Ⅳ Application (3): Effect of temperature relax. on RTI

 Temperature relaxation alters the acceleration at the interface

Interface

Disequilibrium 
model

The perturbation growth under 
different relaxation rates η

Equilibrium 
model

Equilibrium model
Disequilibrium model

Zhang C., Wang L., PRE,108(2023)045108. 

 Temperature relaxation slows down the development of RTI

 Using one-fluid model may underestimate perturbation development
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Ⅳ Application (4): Interpenetration mix in hohlraum

初始分布

ICF indirect drive

Hohlraum

Helium

Capsule

 The laser-ablated Au bubble and Helium interpenetration due 

to velocity disequilibrium. The resulting mix zone is as long as 

300μm, leading to energy loss.

Au mass fraction Temperature

Au He
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Conclusion

初始分布 We have proposed a multi-component disequilibrium model

• It resolves temperatures and velocities of different ion/electron species 

• It has a unified formulation for atomic/grain mix

• It has numerical advantages in convergence and is free of spurious oscillations

The model has been used to evaluate the disequilibria in atomic/grain mix of ICF

• The temperature separation between ion species is as large as 3keV after shock convergence

• Temperature relaxation slows down RTI development

• Velocity disequilibrium causes serious inter-penetration mixing between Au and He in hohlraum 

(~300μm)


