

Томский государственный университет

Национальный исследовательский

Одноступенчатая пневматическая установка для ускорения макротел

А.Н. Ищенко, Ю.Ф. Христенко, О.В. Ушакова,

А.Д. Сидоров, Е.В. Жалнин, К.С. Старцев

Докладчик: Алексей Дмитриевич Сидоров

Проведение экспериментально-теоретических работ по разработке и испытанию лабораторной пневматической одноступенчатой метательной установки малого калибра.

Задачи:

- Проведение баллистического проектирования, сборки, настройки установки и её испытания;
- Проведение параметрических исследований, позволяющих оценить возможности установки, в том числе максимально возможную дульную скорость.

Баллистическое проектирование

1 – камера высокого давления; 2 – диафрагменный блок; 3 –

метаемая сборка; 4 – канал ускорителя;

Рисунок 1 – Общая схема лабораторной пневматической установки

Параметры:

- материал установки сталь (для обеспечения прочности установки);
- длина канала ускорителя: $0.8 \le L \le 1.5$ м;
- калибр установки: d = 8 мм;
- объем камеры высокого давления: $20 \le W_0 \le 50 \text{ см}^3$;
- начальная температура $T_0 = 295$ К;
- материал мембраны: лавсановая пленка, алюминиевая фольга, латунная фольга;
- толщина диафрагмы: $0.1 \le h \le 0.5$ мм;

Ищенко А. Математическая модель и программный комплекс для теоретического исследования внутрибаллистических процессов в ствольных системах / А. Ищенко, В. Касимов; – Томск : Издательский дом Томского гос. ун-та, 2015. – 72 с.

Лабораторная одноступенчатая пневматическая установка и её части

0 1 2 3 4 5 6 7 8 9 10

Рисунок 5 – Метаемая сборка, вид сбоку

Рисунок 6 – СВЧ - радар

Рисунок 3 – Общий вид лабораторной одноступенчатой газодинамической установки

Результаты экспериментов

Таблица 1 – Расчётные и экспериментальные данные, полученные на одноступенчатой газодинамической установке

N₂	Начальное давление Р₀, МПа	Дульная скорость V _д , м/с эксперимент	Дульная скорость V _л , м/с расчёт
1	22.0	545	546
2	25.0	571	575
3	28.0	591	589

Параметрические исследования возможностей одноступенчатой газодинамической установки

Таблица 2 – Результаты параметрических исследований

N⁰	Начальное давление	Дульная скорость	
	<i>P</i> ₀ , МПа	<i>V</i> _л , м/с	
1	30.0	603	
2	40.0	660	
3	50.0	704	
4	60.0	742	
5	70.0	773	
6	80.0	800	
7	90.0	824	
8	100.0	846	

Параметрические исследования возможностей одноступенчатой газодинамической установки

Предельная скорость истечения газа определяется по формуле: $U_{\text{пред}} = \sqrt{\frac{2}{(\gamma - 1)} \cdot \frac{\gamma RT}{\mu}}$, где $c = \sqrt{\frac{\gamma RT}{\mu}}$ - скорость звука в газе, μ – молекулярный вес

Таблица 3 – Результаты параметрических исследований с применением легкого газа

7

Газ в камере высокого давления	Р ₀ , МПа	V _Д , м∕с	μ, г/моль	q, г
Водород		984	2,01588	
Гелий	22	845	4,0026	0.51
Воздух		542	28,97	0.01

Рисунок 10 – Временные зависимости дульной скорости метаемой сборки с применением легких газов

Параметрические исследования возможностей одноступенчатой газодинамической установки

8

Результаты:

- Выполнено баллистическое проектирование, сборка, настройка установки, а также проведена серия экспериментов с регистрацией основных баллистических параметров метания;
- Проведены обширные параметрические исследования, позволяющие оценить возможности установки, в том числе максимально возможную дульную скорость.

Томский государственный университет

Национальный исследовательский

Спасибо за внимание!

Одноступенчатая пневматическая установка для ускорения макротел

А.Н. Ищенко, Ю.Ф. Христенко, О.В. Ушакова,

А.Д. Сидоров, Е.В. Жалнин, К.С. Старцев

Докладчик: Алексей Дмитриевич Сидоров