

XVII Международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ», 19–23 мая 2025 г. Снежинск, Челябинская область, Россия

ОЦЕНКА ЭФФЕКТИВНОСТИ ЗАЩИТНЫХ СВОЙСТВ МОНОЛИТНЫХ И РАЗНЕСЕННЫХ ЗАЩИТНЫХ ЭКРАНОВ КОСМИЧЕСКИХ АППАРАТОВ

Радченко П.А., Радченко А.В., Батуев С.П., Кануткин А.В.

Институт физики прочности и материаловедения Сибирского отделения РАН, Томск

Исследование выполнено за счет гранта Российского научного фонда № 24-21-00421, <u>https://rscf.ru/project/24-21-00421/</u>

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Критерий разрушения
$$e_u < \frac{\sqrt{2}}{3} \sqrt{3T_2 - T_1^2}$$

Экспериментальные данные по ударно-волновому сжатию и адиабатическому расширению конденсированных веществ : Науч. изд. / [Р. Ф. Трунин, Л. Ф. Гударенко, М. В. Жерноклетов, Г. В. Симаков]; Под ред. Р. Ф. Трунина. - Саров : РФЯЦ-ВНИИЭФ, 2001. - 446 с. 2

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Image: constraint of the second of the sec

Lv-tan Chen, Qi-guang He, Xiao-wei Chen Numerical study on the phase-transition characteristics of debris cloud under hypervelocity impacts // International Journal of Impact Engineering 187 (2024) 104922, https://doi.org/10.1016/j.ijimpeng.2024.104922. Samet Ceri, Zahra Sharif Khodaei Numerical investigation of hypervelocity impact simulation with FEM/SPH formulation for space structures // International Journal of Impact Engineering 187 (2024) 104926, https://doi.org/10.1016/j.ijimpeng.2024.104926

СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

	υ _r , м/с	d _{scr} , мм.	h _{wit} , мм	d _{wit} , мм.
Эксперимент, v ₀ =1466 м/с	1412	18,83	10,01	29,8
Расчет, v ₀ =1466 м/с	1430	20	11.1	31
δ, %	1,3	6,2	10,9	4

Эксперимент, v ₀ =1986 м/с	1852	20,53	12,32	22,03
Расчет, v ₀ =1986 м/с	1894	20,8	12,5	24,3
δ, %	2,1	2,4	1,5	10,3

Эксперимент, v ₀ =2312 м/с	2150	21,47	7,35	-
Расчет, v ₀ =2312 м/с	1950	21	7,8	-
δ, %	9,3	2,2	6,1	-

ВЫСОКОСКОРОСТНОЕ ВЗАИМОДЕЙСТВИЕ

υ₀=1466 м/с

υ₀=1986 м/с

ЭКСПЕРИМЕНТ

C.J. Maiden and A.R. McMillan. An Investigation of the Protection Afforded a Spacecraft by a Thin Shield. *AIAA Journal*, 2(11): 1992–1998, 1964.

постановка задачи

Рассматривается численное моделирование взаимодействия алюминиевой частицы диаметром 5 мм с монолитной преградой из алюминиевого сплава 2024-ТЗ А1 толщиной 4 мм и разнесенной преградой эквивалентной толщины, состоящей из экрана толщиной 1 мм и второй преграды толщиной 3 мм. Расстояние между экраном и второй преградой составляло 10 мм. Рассмотрен диапазон скоростей взаимодействия 3–15 км/с.

0

1

ЗАПРЕГРАДНЫЙ ИМПУЛЬС ПОТОКА ОСКОЛКОВ

В Таблице представлены значения максимального осевого импульса (импульса, направленного вдоль оси Z) потока осколков, образующихся после взаимодействия частицы с монолитной I_z^m и разнесенной I_z^s преградами. Значения осевого импульса позволяют оценить поражающую способность осколочного потока. Суммарный осевой импульс осколочного потока определяется соотношением:

$$I_z = \sum_{i=1}^n m_i w_i$$

где i – общее количество осколков, m_i – масса i–го осколка, w_i – составляющая скорости i–го осколка по оси Z, совпадающей с направлением удара.

v_0 , km/s	3	7	10	15
I_z^m , N·s	0,27	1,03	1,43	1,47
I_z^s , N·s	0,08	0,05	0,03	0

- 1. Предложенные алгоритмы разрушения и разделения элементов расчетной сетки описывают образование новых контактных и свободных границ, и позволяют проводить расчеты в рамках Лагранжева подхода при скоростях взаимодействия до 15 км/с.
- 2. Тестовые расчеты показали хорошее согласие с экспериментом по конечному результату взаимодействия – глубине кратера.
- 3. Проведены расчеты по оценке эффективности модельных монолитных и разнесенных защитных экранов. Результаты расчетов подтвердили увеличение эффективности защитных свойств разнесенных конструкций по сравнению с монолитными эквивалентной толщины, с увеличением скорости взаимодействия.
- 4. В рамках предложенного подхода можно проводить расчеты по оценке эффективности защитных свойств элементов пассивной защиты космических аппаратов.

СПАСИБО ЗА ВНИМАНИЕ!