Антипов М.В., Георгиевская А.Б., <u>Карсанова Т.В.</u>, Полшков Д.А., Пономаренко Д.С., Федосеев А.В.

газовых средах

сформированного в результате ударноволнового нагружения металлов, в

Эволюция потока частиц,

РФЯЦ-ВНИИЭФ РОСАТОМ

Физический факультет Московского государственного университета имени М.В.Ломоносова

XVII Международная конференция «Забабахинские научные чтения»

Механизмы образования частиц

Одним из механизмов разрушения материалов является выброс частиц со свободной поверхности (пыление) после выхода на неё ударной волны. В результате наличия микронеровностей на поверхности развиваются неустойчивые течения.

осковского осударственного университета мени М.В. Домоносова

РФЯЦ-ВНИИЭФ

Цель: апробация физически-обоснованной модели эволюции потока частиц, сформированного в газовой среде в результате ударноволнового нагружения металла, для различных металлов (свинец, олово) и различных газов (ксенон, гелий, азот).

Задачи:

•Анализ экспериментальных данных по эволюции плотности потока частиц в газовых средах с помощью СИ и протонографии [1, 2];

Проведение расчетов параметров «источника» ударно-индуцированного «пыления» образцов из олова и свинца для моделируемых экспериментов;
Проведение численного моделирования экспериментов и сравнение результатов моделирования с экспериментальными данными;
Анализ данных по изменению спектра размеров частиц, полученных при

проведении численного моделирования, с течением времени.

[1] Замыслов Д. Н., Панов К. Н., Георгиевская А. Б. и др. Эволюция параметров потока частиц в ксеноне при ударно-волновом нагружении свинца нестационарной ударной волной амплитудой 43 ГПа. // Труды Международной конференции «ХХІ Харитоновские тематические научные чтения». ФГУП «РФЯЦ-ВНИИЭФ». – 2019. – С. 156-164.

[2] И. А. Тен, Э.Р. Прууэл, А.О. Кашкаров, И.А. Рубцов, М.В. Антипов, А.Б. Георгиевская и др. Регистрация выброса частиц из ударно-нагруженных металлов методами СИ. // Труды Международной конференции «XIX Харитоновские тематические научные чтения». ФГУП «РФЯЦВНИИЭФ». – 2017. – С. 204-211.

Модель эволюции потока частиц, сформированного в результате ударноволнового нагружения, в газовой среде

В основе модели лежат следующие принципы:

• «Источник» ударно-волнового «пыления» и «первичный» спектр размеров частиц подчиняются модели [1];

• Частицы дробятся в соответствии с законами дробления одиночной жидкой частицы в газовом потоке, калиброванных на современных экспериментальных данных [2].

[1] A.B. Georgievskaya, V.A. Raevskiy. A Model of a Source of Shock Wave Metal Ejection Based on Richtmyer – Meshkov Instability Theory.// Journal of Dynamic Behavior of Materials. Volume 3. Issues 2.– 2017. C. 321-333.

[2] К. В. Анисифоров, А. Б. Георгиевская, Е. В. Левкина и др. Расчетно-экспериментальное исследование процесса дробления капли жидкости под действием воздушной ударной волны. // ЖЭТФ Т. 167 №11

Модель «источника»

Зависимость выброшенной массы частиц от отношения средней скорости в облаке к скорости СП образца Связь характерного размера частиц с их скоростью (отношением скорости частиц к скорости СП образца)

[1] A.B. Georgievskaya, V.A. Raevskiy. A Model of a Source of Shock Wave Metal Ejection Based on Richtmyer – Meshkov Instability Theory.// Journal of Dynamic Behavior of Materials. Volume 3. Issue 2.– 2017. C. 321-333.

Механизм разрушения единичной капли в потоке газа

Игла Ø 0,7 мм VB t = 18 мкс t = 28 мкс t = 28 мкс t = 28 мкс

Re=10³-10⁵, La=0,4-6,4×10⁶, We=35-14000

[2] К. В. Анисифоров, А. Б. Георгиевская, Е. В. Левкина и др. Расчетно-экспериментальное исследование процесса дробления капли жидкости под действием воздушной ударной волны. // ЖЭТФ Т. 167 №11

Численная реализация модели с использованием методики LAMP

LAMP (Lagrange Multiphase Program) разработки РФЯЦ-ВНИИЭФ (Гамов А.Л., Пономаренко Д.С.) - одномерный численный решатель уравнений газодинамики многофазной сплошной среды в одномерном приближении.

Методика позволяет решать задачи совместного движения сплошной среды (газов, жидких сред) и дисперсной фазы, представляющей собой поток мелкодисперсных частиц, образованных после воздействия интенсивных ударных нагрузок.

Окно графического интерфейса

Численная реализация модели с использованием методики LAMP

Для того, чтобы определить, как характеристики «источника» пыления трансформируются во времени при наличии газовой среды, в библиотеку LAMP были внесены следующие изменения:

1. Введен новый критерий дробления [1]:

$$\bar{d} = \xi_{\sqrt[3]{\frac{\sigma d_0^2}{\rho_{SW} V_g^2}}} = \xi d_0 (We)^{-1/3}, \qquad \bar{d} \le d_0$$

2. Скорректировано время дробления частиц:

$$t_f \approx \frac{4d_0}{V_g} \sqrt{\frac{\rho_0}{3\rho_{SW}C_x C_f^2}};$$

3. Изменено значение критического числа Вебера [2].

[1] К. В. Анисифоров, А. Б. Георгиевская, Е. В. Левкина и др. Расчетно-экспериментальное исследование процесса дробления капли жидкости под действием воздушной ударной волны. // ЖЭТФ Т. 167 №11
 [2] Б.С. Дорогов. Эрозия лопаток в паровых турбинах. Изд-во «Энергия». Москва. 1965.

Эксперимент РФЯЦ-ВНИИЭФ

Р~43 ГПа, А₀≈45 мкм, *λ*≈300 мкм Канал инжекции в УНК

ГУ и характеристики «источника»

Результаты (Протонография) Рb и Xe (1 атм), _{QXe}(1 атм) ≈ 0,0055г/см³

Сравнение с экспериментом

распределения плотности потока

частиц вдоль направления

движения ($t_{break} = 1,9; \xi = 0,3$)

Изменение интегрального распределения массы частиц по размерам со временем

Ризический факульте Лосковского

осударственного университета імени М.В.Ломоносова РФЯЦ-ВНИИЭФ

Эксперимент ИЯФ СО РАН и ВНИИЭФ на ВЭПП-3 🚳

13

Р~44 ГПа, А₀≈20 мкм, *λ*≈110 мкм

Станция «Взрыв» на ускорителе ВЭПП-3

И. А. Тен, Э.Р. Прууэл, А.О. Кашкаров, И.А. Рубцов, М.В. Антипов, А.Б. Георгиевская и др. Регистрация выброса частиц из ударно-нагруженных металлов методами СИ. // Труды Международной конференции «XIX Харитоновские тематические научные чтения». ФГУП «РФЯЦ–ВНИИЭФ». – 2017. – С. 204–211.

 деталь из пластифицированного октогена Ø 20х20мм;
 оловянный диск Ø20х3мм;
 пьезоэлектрический датчик;
 4 – корпус; 5 – лавсан;
 6 – детектор СИ DIMEX

Результаты (СИ)

потока частиц вдоль направления движения

Результаты (СИ)

Изменение интегрального распределения массы частиц по размерам со временем

Ризический факультет Лосковского осударственного университет

Эксперимент ВНИИЭФ на ВЭПП-3

1 – деталь из пластифицированного октогена Ø 20х20мм;
2 – оловянный диск Ø20х3мм;
3 – пьезоэлектрический датчик;
4 – корпус; 5 – лавсан;
6 – детектор СИ DIMEX

Профилограмма одного из образцов

Результаты (СИ)

Сравнение с экспериментом распределения плотности потока частиц вдоль направления движения

Физический факультет Московского

государственного университета имени М.В.Ломоносова

Результаты (СИ)

размерам со временем

изический факульте

осударственного университета мени М.В.Ломоносова РФЯЦ-ВНИИЭФ

Выводы

Получено удовлетворительное описание экспериментов с помощью модели эволюции потока частиц в газовой среде;
Продемонстрировано, что модель обладает прогностическими способностями, связанными с изменением спектра размеров частиц с течением времени.