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m Shock-induced Micro-jet

B Micro-jet phenomenon occurs on the metal surface under strong shock,
forming high-speed and fine metal particles.

m Typical features: high-speed ~several km/s; small size ~ several pm

® Influencing factors: sensitive to shock strength, surface disturbances,
material characteristics, micro-mesoscopic structural defects ..., which are
complex multi-mechanism dynamic behaviors.
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— Formation mechanism

B Shock waves converge at the surface disturbance interface, resulting in the
reverse of disturbance, resulting in the formation of spike and bubble (RMI
Mechanism);

B Micro-jet further broken up to form high-speed particles due to the
velocity gradient along shock direction.
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m Research Backgroud

B The basic features of ejecta (high-speed ~several km/s; small size ~ several pm)

bring great challenges to experimental diagnosis and theoretical research;

B Experiments (such as high-resolution holographic imaging technology) cannot

provide details on the dynamic process of ejecta breakup;

B Molecular simulation cannot give quantitative results comparable to the

experimental scale.
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m Numerical Methods

O The scale of molecular simulation is several orders of magnitude
different from that of the experiment;

O The mesh-based methods have difficulties in describing large
deformation and interfacial capture (surface tension calculation);

O The smooth particle hydrodynamics (SPH) are superior in

simulating large deformation and interfacial capture.
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— Surface Tension

Continuous Surface Force (CSF) Model:

1) Surface normal: calculate according to the eigenvalue of the shape matrix;
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m Numerical stability problem

O Non-uniform spatial distribution may lead to the decline of calculation

accuracy, cause stability problems in long-term calculation;

O The particle shift technique (PST) and the diffusion term is to keep uniform

spatial distribution and suppress the non-physical oscillation of the field

variables.
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m Surface Detection (for PST)

PST needs to zero the normal shift at surface to ensure strict boundary conditions
Three-step Calculation of Interface Detection:

1) Preliminary identification: obtain surface normal;

2) Geometric detection: scan the sector area to identify surface and internal particles;

3) Partition: Particles are divided into disperse particles, surface particles, near-

surface particles. and internal particles.  asfipartidle, ook siitfictparicles
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m Verification-Metal Strength Effect

O Problem Statement: How does metal strength affect jet velocity?

O Simulation settings: copper surface trench wavelength 550 p m, perturbation
kh = {0.12, 0.35, 0.75, 1.5}, impact strength ~ 36GPa;

O Verification: SPH simulation can effectively evaluate the spike growh with
strength effect.
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m Verification-Droplet Oscillation

O Problem Statement: oscillation of spherical droplet in the initial velocity field;
O Simulation settings: radius of 0.005 m, density of 1000 kg/m3, surface tension
coefficient of 0.2 ,initial velocity field (- Ax, — Ay, 2Az) with A = 5;

O Verification: The oscillation period is in good agreement with the theoretical

solution.
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u Verification--Rayleigh Instability of Cylindrical Rod @

O Problem Statement: Rayleigh instability occurs in a stationary slender cylindrical rod;

O Simulated settings: Radius of 0.005 m and length of 2 m, density 1000 kg/m3, and the

surface tension coefficient is 0.0728 N/m;
O Verification: the principal instability mode obtained is kR, = 0.694, close to theoretical

solution of 0.697.
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m Numerical Simulation of Jet Breakup

O Simulation strategy: a compressible form of conservation equation is required for
shock induced ejection formation in early time, while the breakup stage adopt the weak
compressibility assumption to speedup simulation;

O Setting: triangular groove (120 degree), impact pressure of ~ 20 GPa (total ~ 130

million particles).
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g Breakup initiation-hole nucleation

O When the local thickness of the jet is close to the particle resolution,

local penetration will occur randomly to form initial holes;
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m Broken zone propagation

O The perturbation generated by the holes then propagates inward
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g hole expansion

O The expansion of holes leads to the concentration of matter in the circular
region, forming Rim structures.

O Hole growth can be simplified as the expansion of circular pores in stationary
20

liquid films, and the expansion rate is given by : v=4/—
Jo,

Theoretical: 8.4 m/s
Simulated: 9.1 m/s, 10.2 m/s
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m Second breakup

After the droplets are seprated from the strip structure, second breakup will occur:
O the oscillating fragmentation caused by the uneven internal velocity distribution
of the droplets;

O the mutual collision between the droplets and triggers breakup.
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g Statistics on particle breakup

O The Second breakup leads to the reduction of large-scale particles and
the increase of small-scale particles;

O The distribution szie of particles is narrowed.
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- Size Distributions in Different Spatial Regions

O the distribution range of particles narrows with the increase of

spatial distance (or ejecta velocity)
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g Particle Size in Different Spatial Regions

O The particle size decreases with the increase of spatial distance (or
ejecta velocity);

O The particle size corresponding to the peak distribution has little

change; 10
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m Size Distributions

O The statistical law of particle size distribution obeys a log normal

distribution in small size while a power law in larger size, in

consistent with experiments;
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m Images of Broken Particles

O Comparison of Spatial Distribution Images of Broken Particles
strip structure

LD

1.0
Position (mm)

Sorenson et al. Journal of Dynamic Behavior of Materials 2017 26



g Outline

v' Conclusions



m Conclusions

O A smooth particle hydrodynamics code with ability to simulate

the long-term evolution of ejecta breakup;

O The dynamic fragmentation process of metal jet was simulated,

and the particle calculation scale reached 130 million;

O The macroscopic dynamic evolution and particle size distribution
of metal jet breakup are obtained, quantitative in agreement

with experiments;

Bao Wu, Xin-Xin Wang, Pei Wang et al, Numerical investigation of shock-induced ejecta breakup and
size distributions. (International Journal of Impact Engineering (2025) 105217 28
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