

Smooth Particle Hydrodynamics Study on Ejecta Breakup and Size Distributions

Bao Wu May 2024

Outline

- √ Background
- ✓ Numerical Methods
- ✓ Ejecta Breakup and Size distributions
- √ Conclusions

Shock-induced Micro-jet

- Micro-jet phenomenon occurs on the metal surface under strong shock, forming high-speed and fine metal particles.
- Typical features: high-speed ~several km/s; small size ~ several µm
- Influencing factors: sensitive to shock strength, surface disturbances, material characteristics, micro-mesoscopic structural defects ..., which are complex multi-mechanism dynamic behaviors.

Ogorodnikov et al. Journal of Experimental and Theoretical Physics 2016

Formation mechanism

- Shock waves converge at the surface disturbance interface, resulting in the reverse of disturbance, resulting in the formation of spike and bubble (RMI Mechanism);
- Micro-jet further broken up to form high-speed particles due to the velocity gradient along shock direction.

4

Research Backgroud

- The basic features of ejecta (high-speed ~several km/s; small size ~ several µm) bring great challenges to experimental diagnosis and theoretical research;
- Experiments (such as high-resolution holographic imaging technology) cannot provide details on the dynamic process of ejecta breakup;
- Molecular simulation cannot give quantitative results comparable to the experimental scale.

Molecular simulation

Sorenson et al. Journal of Dynamic Behavior of Materials 2017

Outline

- √ Background
- ✓ Numerical Methods
- ✓ Ejecta Breakup and Size distributions
- √ Conclusions

Numerical Methods

- □ The scale of molecular simulation is several orders of magnitude different from that of the experiment;
- □ The mesh-based methods have difficulties in describing large deformation and interfacial capture (surface tension calculation);
- ☐ The smooth particle hydrodynamics (SPH) are superior in simulating large deformation and interfacial capture.

Ejection Simulated by SPH (2D)

Surface Tension

Continuous Surface Force (CSF) Model: $m{F}_i = -\sigma m{k}_i m{n}_i \delta_{\sum,i}$

1) Surface normal: calculate according to the eigenvalue of the shape matrix;

$$\boldsymbol{n_i} = \begin{cases} -\frac{\nabla \lambda_i}{\parallel \nabla \lambda_i \parallel} & \text{if } \parallel \nabla \lambda_i \parallel > 0.1 \frac{\lambda_i}{h_i} \text{, and } \lambda_i > 0.1 \\ \mathbf{0} & \text{otherwise,} \end{cases} \quad \forall \lambda_i = \begin{cases} \sum_{j \in \Omega_i} (\lambda_j - \lambda_i) (\boldsymbol{L_i} \nabla W_{ij}) V_j & \text{if } \lambda_i \geq 0.7 \\ \sum_{j \in \Omega_i} \lambda_j (\boldsymbol{L_i} \nabla W_{ij}) V_j & \text{otherwise,} \end{cases}$$

2) Surface curvature: Local correction to avoid erroneous sharp areas;

$$\kappa_{i} = \sum_{j \in \Omega_{i}} s_{ij} (\boldsymbol{n}_{j} - \boldsymbol{n}_{i}) \cdot (\boldsymbol{L}_{i} \nabla W_{ij}) V_{j},$$

$$s_{ij} = \begin{cases} 1 & \text{if } \boldsymbol{n}_{i} \cdot \boldsymbol{n}_{j} \geq -\frac{1}{3} \text{ and } \parallel \boldsymbol{n}_{i} \parallel > 0 \text{ and } \parallel \boldsymbol{n}_{j} \parallel > 0 \\ 0 & \text{otherwise,} \end{cases}$$

3) Interface function: Shepard correction is used to improve local accuracy.

$$\delta_{\Sigma,i} = 2\max\left(1, \frac{1}{2\sum_{j\in\Omega_i} W_{ij}V_j}\right) \|\sum_{j\in\Omega_i} \nabla W_{ij}V_j\|$$

Numerical stability problem

- □ Non-uniform spatial distribution may lead to the decline of calculation accuracy, cause stability problems in long-term calculation;
- □ The particle shift technique (PST) and the diffusion term is to keep uniform spatial distribution and suppress the non-physical oscillation of the field variables.

Wang et al. Computer Methods in Applied Mechanics and Engineering 2019 Antuono et al. Computer Physics Communications 2010

Diffusion term

Mass conservation

$$\psi_{ij} = 2(\rho_j - \rho_i) \frac{\mathbf{r}_{ji}}{|\mathbf{r}_{ij}|^2}$$

momentum conservation

$$\pi_{ij} = \frac{(\boldsymbol{u}_j - \boldsymbol{u}_i) \cdot \boldsymbol{r}_{ji}}{|\boldsymbol{r}_{ij}|^2}$$

Energy conservation

$$\boldsymbol{\phi}_{ij} = 2(e_j - e_i) \frac{\boldsymbol{r}_{ji}}{|\boldsymbol{r}_{ij}|^2}$$

Surface Detection (for PST)

PST needs to zero the normal shift at surface to ensure strict boundary conditions

Three-step Calculation of Interface Detection:

- 1) Preliminary identification: obtain surface normal;
- 2) Geometric detection: scan the sector area to identify surface and internal particles;
- 3) Partition: Particles are divided into disperse particles, surface particles, near-

surface particles, and internal particles.

$$\boldsymbol{n_i} = \begin{cases} -\frac{\nabla \lambda_i}{\parallel \nabla \lambda_i \parallel} & \text{if } \parallel \nabla \lambda_i \parallel > 0.1 \frac{\lambda_i}{h_i} \text{, and } \lambda_i > 0.1 \\ \boldsymbol{0} & \text{otherwise,} \end{cases}$$

$$\begin{cases} \forall j \in \mathbb{N}[|\mathbf{x}_{ji}| \geqslant \sqrt{2}\mathbf{h}, |\mathbf{x}_{jT}| < \mathbf{h}] \\ \forall j \in \mathbb{N}[|\mathbf{x}_{ji}| < \sqrt{2}\mathbf{h}, |\mathbf{n} \cdot \mathbf{x}_{jT}| + |\mathbf{\tau} \cdot \mathbf{x}_{jT}| < \mathbf{h}] \\ \text{otherwise} \end{cases}$$

 $i \notin \mathbb{F}$

 $i \notin \mathbb{F}$ $i \in \mathbb{F}$

Marrone et al. Journal of Computational Physics 2010 Khayyer et al. Journal of Computational Physics 2017

Numerical stability problem

No PST

With PST

Verification-Metal Strength Effect

- □ Problem Statement: How does metal strength affect jet velocity?
- □ Simulation settings: copper surface trench wavelength 550 μ m, perturbation kh = {0.12, 0.35, 0.75, 1.5}, impact strength ~ 36GPa;
- □ Verification: SPH simulation can effectively evaluate the spike growh with strength effect.

Jet Evolution
Left: Experiments
Right: SPH simulations

Comparison of Experimental and SPH Simulated Results of Jet Velocity

Verification-Droplet Oscillation

- □ Problem Statement: oscillation of spherical droplet in the initial velocity field;
- □ Simulation settings: radius of 0.005 m, density of 1000 kg/m³, surface tension coefficient of 0.2 ,initial velocity field (-Ax, -Ay, 2Az) with A = 5;
- Verification: The oscillation period is in good agreement with the theoretical solution.

velocity field

oscillation period vs surface tension coefficient

Verification--Rayleigh Instability of Cylindrical Rod

- □ Problem Statement: Rayleigh instability occurs in a stationary slender cylindrical rod;
- □ Simulated settings: Radius of 0.005 m and length of 2 m, density 1000 kg/m3, and the surface tension coefficient is 0.0728 N/m;
- □ Verification: the principal instability mode obtained is $kR_0 = 0.694$, close to theoretical solution of 0.697.

Outline

- √ Background
- ✓ Numerical Methods
- ✓ Ejecta Breakup and Size distributions
- √ Conclusions

Numerical Simulation of Jet Breakup

- □ Simulation strategy: a compressible form of conservation equation is required for shock induced ejection formation in early time, while the breakup stage adopt the weak compressibility assumption to speedup simulation;
- Setting: triangular groove (120 degree), impact pressure of ~ 20 GPa (total ~ 130 million particles).

初始模型

射流形成与破碎过程

Breakup initiation-hole nucleation

4.0

3.5

3.0

2.5 2.0 2.5 1.5 Lyickness

1.0

0.5

☐ When the local thickness of the jet is close to the particle resolution, local penetration will occur randomly to form initial holes;

Broken zone propagation

□ The perturbation generated by the holes then propagates inward

hole expansion

- ☐ The expansion of holes leads to the concentration of matter in the circular region, forming Rim structures.
- □ Hole growth can be simplified as the expansion of circular pores in stationary liquid films, and the expansion rate is given by : $v = \sqrt{\frac{2\sigma}{c}}$,

Theoretical: 8.4 m/s

Simulated: 9.1 m/s , 10.2 m/s

Dynamic process of breakup

Second breakup

After the droplets are seprated from the strip structure, second breakup will occur:

- □ the oscillating fragmentation caused by the uneven internal velocity distribution of the droplets;
- □ the mutual collision between the droplets and triggers breakup.

Statistics on particle breakup

- ☐ The Second breakup leads to the reduction of large-scale particles and the increase of small-scale particles;
- ☐ The distribution szie of particles is narrowed.

Size Distributions in Different Spatial Regions

□ the distribution range of particles narrows with the increase of spatial distance (or ejecta velocity)

Particle Size in Different Spatial Regions

☐ The particle size decreases with the increase of spatial distance (or ejecta velocity);

□ The particle size corresponding to the peak distribution has little

change;

Number

Size Distributions

☐ The statistical law of particle size distribution obeys a log normal distribution in small size while a power law in larger size, in

Diameter (µm)

SPH Simulations

Sorenson D S, Journal of Dynamic Behavior of Materials, 2017

Images of Broken Particles

□ Comparison of Spatial Distribution Images of Broken Particles

Outline

- √ Background
- ✓ Numerical Methods
- ✓ Ejecta Breakup and Size distributions
- √ Conclusions

Conclusions

- ☐ A smooth particle hydrodynamics code with ability to simulate the long-term evolution of ejecta breakup;
- ☐ The dynamic fragmentation process of metal jet was simulated, and the particle calculation scale reached 130 million;
- ☐ The macroscopic dynamic evolution and particle size distribution of metal jet breakup are obtained, quantitative in agreement with experiments;

Thanks for your listening!