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In recent years, machine learning methods have gained popularity for solving differential equations 
[1]. This approach is based on the Kolmogorov-Arnold [2] and Cybenko [3] theorems on representation 
of function as a neural network in a sum of parameterized sigmoidal transformations of one-dimensional 
linear functions. This method is similar to the Galerkin method [4], where activation functions satisfying the 
requirements of the theorems are chosen as basis functions. These approximations allow for considering the 
nonlinear and even discontinuous nature of the original function’s behavior.

As a test example, the solution of a mathematical physics equation in the class of infinitely smooth sigmoidal 
functions is considered, specifically, a one-dimensional linear transport equation with a discontinuous initial 
condition in the form of a step function:
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where a is the transport speed constant. The neural network solution of the equation was verified by compari-
son with the exact solution: u x t u x at, .� � � �� �0  

To solve equation (1), an approximation using a single-layer neural network with a sigmoidal function 
was chosen:
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where Wi , Ai , Bi , Ci , D (3) are the search parameters (“weights”) of the neural network, � s s� � � � �� �1 1 exp( ) , 
K is the number of neurons.

Modern tensor library technologies (such as torch) enable efficient utilization of advanced mathematical 
algorithms in working with neural networks. For optimization problems, modifications of stochastic gradient 
descent are provided for an arbitrary number of parameters. The calculation of exact derivatives of functions 
from search parameters (3) using automatic differentiation methods is also supported. Therefore, derivatives 
of approximation (2) can be written for the solution of the transport equation, allowing ones to approximate 
the differential part:
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The final step involves minimizing the residual L with respect to the parameters (3) as the sum of L2  
norms of the differential equation and initial conditions using the Adam optimizer from the torch module in 
Python:
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It was found that, due to the chosen class of infinitely smooth sigmoidal functions (2), a large value 
of search parameter A  allows achieving the required accuracy in describing the discontinuity at x  (see 



Fig. 1) for the entire time interval t.  This makes it possible to obtain a discontinuous solution of the transport 
equation with the necessary precision.

A comparison of the accuracy of the obtained neural network solution with finite-difference methods of 
various orders of accuracy is also performed.

	 a	 b
Fig. 1. Sigmoid function converging to the Heaviside step function as a function of the parameter at x: 

a – domain from -5 to 5; b – 800× magnification 
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