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The development of Kolmogorov's theorem [1] on the decomposition of multidimensional continuous 
functions into a sum of superpositions of one-dimensional functions led to Cybenko’s theorem [2], which 
states that the set of functions representable by a single-layer neural network is dense in the space of 
continuous functions. These KAN-functions [3] are a sum of parameterized sigmoidal transformations 
of one-dimensional linear functions. With the exclusive level of software support to neural networks, it 
becomes possible to create highly efficient programs for approximating multidimensional functions and 
domain boundaries as a finite sum of simple, infinitely smooth functions, including potentials of equations 
of state and solutions to mathematical physics problems.

Highly efficient programs have been developed in Python for the torch tensor module [3] for solving 
such problems. This module includes a number of stochastic gradient descent [4] programs for finding 
dozens, hundreds, or even thousands of parameters of the minimum of the residual functional. The automatic 
differentiation of this functional with respect to search parameters and the capabilities of tensor algebra allow 
the minimization problem to be written in several short lines. Programs on request .cuda() are executed on 
an RTX3070 video card from Nvidia with CUDA practically within a few minutes.

The first Dirichlet problem for an elliptic equation is considered as an example where a mathematical 
physics problem is solved as a multidimensional KAN-function without the use of grid methods and grid 
differential. The problem is divided into a sum of solutions to the Poisson problem and the Laplace problem 
with the boundary condition in the form of the difference between the given boundary conditions and those 
remaining from the solution of the Poisson problem. The proposed method easily solves the elliptical problem 
with an arbitrarily shaped domain which is very difficult to solve with grid methods.

For a KAN-function approximated problem, the calculation of the normal derivatives of the intermediate 
KAN-surface solution of the Laplace equation at an arbitrary point on the domain boundary can easily be 
written in tensor form. This makes it easy to write a simple program for solving Neumann’s problem for an 
arbitrarily shaped domain. The solution obtained in the form of an infinitely smooth KAN-function allows 
further processing and use in a convenient and effective manner.

So, the analytical solution of the Laplace problem in a square domain with the linear boundary conditions 
generated by a planar solution is described by infinite Fourier expansions, and any finite sums in these 
expansions have the Gibbs phenomenon in the corners of the domain, but the phenomenon is absent in the 
KAN-solution which describes the plane with very high accuracy.
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