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Coefficient inverse problems for parabolic equations

𝑞(𝑡)𝑢𝑡 = 𝐿 𝑟 𝑠 , 𝜎 𝑠 𝑢, 𝑠 ∈ Ω, 𝑡 ∈ (0, 𝑇)

𝑢 𝑠, 0 = 𝑢0(𝑠),

and boundary conditions. 𝐿 is elliptic operator.

Inverse problem: it is required to recover functions 𝑞(𝑡), 𝑟 𝑠 and 𝜎 𝑠 by 
known additional information

- Nonlocal data:

- Data on the given curve:      𝑢 𝝋 𝑡 , 𝑡 = 𝒇𝟑(𝑡).

Ω 𝝌 𝑠 𝑢 𝑠, 𝑡 𝑑𝑡 = 𝒇𝟏 𝑡 , න

0

𝑇

𝝁 𝑡 𝑢 𝑥, 𝑡 𝑑𝑡 = 𝒇𝟐 𝑥



Financial mathematics is a relatively young discipline that has developed rapidly in recent 
decades.

This development was due to the formation of powerful financial markets with a variety of 
instruments for redistributing risks between market participants. 

The changes that occurred in the oil market in connection with the creation of a cartel of 
OPEC oil-producing countries required the developed oil-exporting countries to adapt to 
the new conditions in the world economy. 

The stock market can be studied separately from the real sector of the economy. 

The activity of market participants is the management of risks associated with the 
uncertainty of the dynamics of financial instruments. 

Coefficient inverse problems for financial mathematics. 

Collaboration work with 
Victor Isakov, Sergey Kabanikhin, Alexander Shananin and Shuhua Zhang



Secondary financial instruments are used to manage risks. 

The theory of pricing in the market of secondary financial instruments was investigated 
in (F. Black and M. Scholes, 1973; R. Merton, 1973; J. C. Cox, S. A. Ross, and M. 
Rubinstein, 1979). 

The modern theory of arbitration, which is based on the modeling of pricing
in the market of secondary financial instruments, can be found in (G. Felmer and A. Shid, 
2010, T. Bjork, 2010).

Important indicators of the stock market are aggregated indices, 
such as the S & P 500 or SSE Composite. 

Introduction



Traditionally, the dynamics of the price of the stock market index is modeled as a 
geometric Brownian motion and is described by stochastic differential equation. 

The form of this stochastic differential equation depends on the real sector of
the economy.

Since the characteristic times of changes in the real sector of the economy
are much greater than the characteristic times of changes in the conjuncture in the 
stock market, these equations can be considered quasi-stationary. 

In this talk, we study the inverse problem of recovering functions which determine 
the form of a stochastic differential equation that simulates the dynamics of the stock 
market index from data of a European sales option.



Petromatrix, a consulting firm, has coined the phrase “shale

band” for the price range between $45 and $65: below that

range, American production falls sharply; above it, it surges. If so,

there should be a tendency for prices to stay within that range. …

Unless some large-scale conflict erupts that takes out some of the

world’s biggest oilfields, the oil industry may be heading for a

new normal in which the price of crude oscillates in the mid-

double digits.
After OPEC: American shale firms are now 

the oil market’s swing producers // The Economist May 16th 2015

“Shale Band”



A great struggle is unfolding in the world oil market. On one side

are forces pushing to rebalance supply and demand; on the other,

those pulling to recalibrate the business so that it operates at lower

cost. That tension explains why the price keeps jumping toward

$60 a barrel and then falling back near $40.”

Daniel Yergin, “The Struggle Behind Oil’s Ups and Downs”

The Wall Street Journal May 16, 2017 7:20 p.m. ET

https://www.wsj.com/articles/the-struggle-behind-oils-ups-and-downs-1494976842

Price corridor ~ 40-60 $/bar.?

“We likely won’t see $100 a barrel again. 

The industry has been recalibrated to a lower 

price level. 
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European call 

European put 

𝑓 𝑆 = max(𝑆 − 𝐾, 0)

𝑓 𝑆 = max(𝐾 − 𝑆, 0)

u - the pay-off function
S  - the stock price
r - the risk-free interest rate
σ - the volatility 
t - the time, t ∈ (,T )
T – the time of maturity



Inverse problem data
𝑢 𝜑 𝑡 , 𝑻 − 𝒕 = 𝑔 𝑡

Here 𝑠 = 𝜑 𝑡 is some curve.



Introduce Φ 𝑑 = න

−∞

𝑑

𝑒𝑥𝑝 −
𝑦2

2
𝑑𝑦

𝑑1 =

ln
𝑆
𝐾 + 𝑟 +

𝜎2

2 (𝑇 − 𝑡)

𝜎 𝑇 − 𝑡
𝑑2 =

ln
𝑆
𝐾 + 𝑟 −

𝜎2

2 (𝑇 − 𝑡)

𝜎 𝑇 − 𝑡

European call 

European put 

𝑢𝐶 𝑆, 𝑡 = 𝑆Φ 𝑑1 − 𝐾 𝑒𝑥𝑝 −𝑟(𝑇 − 𝑡) Φ 𝑑2

𝑢𝑃 𝑆, 𝑡 = 𝐾 𝑒𝑥𝑝 −𝑟(𝑇 − 𝑡) Φ −𝑑2 − 𝑆Φ −𝑑1

Black F and Scholes M. The pricing of options and corporate liabilities. J Pol Econ, 1973; 81: 637–659.
Wilmott, P, Howison, S, Dewynne, J., The mathematics of financial derivatives, Cambridge, 1997.
P. Wilmott, The mathematics of financial derivatives: a student introduction, Cambridge University Press, 1995.
E. G. Haug, The complete guide to option pricing formulas, vol. 2, McGraw-Hill New York, 1998.
Y.-K. Kwok, Mathematical models of financial derivatives, Springer, 2008.



S.R. Dunbar. Department of Mathematics. University of Nebraska-Lincoln. Stochastic Processes and
Advanced Mathematical Finance: Solution of the Black-Scholes Equation
(http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/BlackScholes/Solution/solutio
n.pdf)

• Authors used the following formula 

• Which was established in 

P. Wilmott, The mathematics of financial derivatives: a student introduction, 
Cambridge University Press, 1995. 

E. G. Haug, The complete guide to option pricing formulas, vol. 2, McGraw-Hill New 
York, 1998.

Y.-K. Kwok, Mathematical models of financial derivatives, Springer, 2008.

𝑢𝐶 𝑆, 𝑡 = 𝑆Φ 𝑑1 − 𝐾 𝑒𝑥𝑝 −𝑟(𝑇 − 𝑡) Φ 𝑑2

𝑢𝑃 𝑆, 𝑡 = 𝐾 𝑒𝑥𝑝 −𝑟(𝑇 − 𝑡) Φ −𝑑2 − 𝑆Φ −𝑑1



u(S,t)

T = 1 year, 

S(0,300), 

K = 100, 

r = 0.1, 

 = 0.2

European call

K.S. Uddin, N.-A-A. Siddiki, A. Hossain. Numerical Solution of a Linear Black-Scholes Model: A Comparative
Overview Journal of of Statistics and Mathematical Sciences, Vol. 1(1) (2015), 1-7.

European put



Inverse Problem for Black-Scholes equation

𝑢𝑡 = 𝑠𝑟(𝑠) 𝑢𝑠 +
1

2
𝑠2𝜎2(𝑠) 𝑢𝑠𝑠 − 𝑟 𝑠 𝑢, 𝑡 ∈ 0, 𝑇 , 𝑠 ∈ 0, 𝐿 ,

𝑢 𝑠, 0 = 𝑓 𝑠 = max 𝐾 − 𝑠, 0 ,

𝑢 0, 𝑡 = 𝐾, 𝑢 𝐿, 𝑡 =0.

Here 𝐿=10K.

Inverse problem data

𝑢 𝜑 𝑡 , 𝑻 − 𝒕 = 𝑔(𝑡).

Here 𝑠 = 𝜑 𝑡 is curve, where we know additional information.

Let us reduce inverse problem to the optimization problem 𝒒 = 𝑟, 𝜎

𝐽 𝒒 = න

0

𝑇

𝑢 𝜑 𝑡 , 𝑻 − 𝒕 − 𝑔(𝑡) 2 𝑑𝑡 → min
𝒒



Gradient optimization method 𝒒𝒏+𝟏 = 𝒒𝒏 − 𝜶𝑱′(𝒒𝒏)

Direct problem 𝑡 ∈ 0, 𝑇 , 𝑠 ∈ 0, 𝐿 , 𝐿 = 10𝐾:

𝑢𝑡 = 𝑠𝑟(𝑠) 𝑢𝑠 +
1

2
𝑠2𝜎2(𝑠) 𝑢𝑠𝑠 − 𝑟(𝑠)𝑢,

𝑢 𝑠, 0 = 𝑓 𝑠 = max 𝐾 − 𝑠, 0 ,

𝑢 0, 𝑡 = 𝐾, 𝑢 𝐿, 𝑡 =0.

Adjoint problem 𝑡 ∈ 0, 𝑇 , 𝑠 ∈ 0, 𝐿 :

𝜓𝑡 = 𝑠𝑟(𝑠)𝜓 𝑠 −
1

2
𝑠2𝜎2 𝑠 𝜓 𝑠𝑠 + 𝑟 𝑠 𝜓 + 2𝛿(𝑠 − 𝜑(𝑡)) 𝑢 𝑠, 𝑻 − 𝒕 − 𝑔(𝑡) ,

𝜓 𝑠, 𝑇 = 0,

𝜓 0, 𝑡 = 𝜓 𝐿, 𝑡 =0.

Gradient of the functional 𝐽′ 𝒒 =
𝑠2

2
න

0

𝑇

𝑢𝑠𝑠 𝑠, 𝑡 𝜓 𝑠, 𝑡 𝑑𝑡 , න

0

𝑇

𝑠𝑢𝑠 𝑠, 𝑡 − 𝑢(𝑠, 𝑡) 𝜓(𝑠, 𝑡)𝑑𝑡



Curve where data is measured



Inverse Problem data

T = 3 monthes, K = 0.9, L=90

r(s)  const = 0.02

Curve 𝜑 𝑡 𝜎 𝑠 = 𝑠
Inverse Problem data 

𝑔 𝑡 = 𝑢 𝜑 𝑡 , 𝑻 − 𝒕



Inverse Problem data

T = 3 months, K = 0.9, L=90

r(s)  const = 0.02

Curve 𝜑 𝑡 𝜎 𝑠 = 𝑠
Inverse Problem data 

𝑔 𝑡 = 𝑢 𝜑 𝑡 , 𝑻 − 𝒕



Inverse Problem data

Curve 𝜑 𝑡

Curves 𝜑0 𝑡 , 𝜑10 𝑡 , 𝜑20 𝑡 , 𝜑30 𝑡

𝜑0 𝑡 =𝜑 𝑡 , 𝑡 ∈ (0, 𝑇)

𝜑𝜏 𝑡 =𝜑 𝑡 +
𝜏

30
, 𝑡 ∈ (0, 𝑇)

T, 
monthes

K L 𝑟 𝑠 𝜎 𝑠 𝜏,
days

𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.1 𝑠 0, 10, 20, 30 1200 0.025 900 0.01 5000



Inverse Problem solution. Recovering 𝜎(𝑠) by 𝑔0 𝑡 .
Method of steepest descent

log 𝑢 𝑛 𝜑0 𝑡 , 𝑇 − 𝑡 − 𝑔0(𝑡)
2Inverse Problem 

solution
Difference

T, 
months

K L 𝑟 𝑠 𝜎 𝑠 𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.1 𝑠 1200 0.025 900 0.01 5000



Inverse Problem solution. Recovering 𝜎(𝑠) by 𝑔0 𝑡 , 𝑔10 𝑡 , 𝑔20 𝑡 , 𝑔30 𝑡 .
Method of steepest descent

log ൬

൰

𝑢 𝑛 𝜑0 𝑡 , 𝑇 − 𝑡 − 𝑔0(𝑡)
2
+ 𝑢 𝑛 𝜑10 𝑡 , 𝑇 − 𝑡 − 𝑔10(𝑡)

2

+ 𝑢 𝑛 𝜑20 𝑡 , 𝑇 − 𝑡 − 𝑔20(𝑡)
2
+ 𝑢 𝑛 𝜑30 𝑡 , 𝑇 − 𝑡 − 𝑔30(𝑡)

2

Inverse Problem 
solution

Difference

T, 
months

K L 𝑟 𝑠 𝜎 𝑠 𝜏,
days

𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.1 𝑠 0,10,20,30 1200 0.025 900 0.01 5000



Inverse Problem solution. Recovering 𝜎(𝑠) by 𝑔0 𝑡 , 𝑔10 𝑡 , 𝑔20 𝑡 ,…, 𝑔110 𝑡 .
Method of steepest descent

log ൬

൰

𝑢 𝑛 𝜑0 𝑡 , 𝑇 − 𝑡 − 𝑔0(𝑡)
2
+ 𝑢 𝑛 𝜑10 𝑡 , 𝑇 − 𝑡 − 𝑔10(𝑡)

2

+⋯+ 𝑢 𝑛 𝜑110 𝑡 , 𝑇 − 𝑡 − 𝑔110(𝑡)
2

Inverse Problem 
solution

Difference

T, 
months

K L 𝑟 𝑠 𝜎 𝑠 𝜏,
days

𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.1 𝑠 0,10,20,…,110 1200 0.025 900 0.01 5000



Inverse Problem solution. Recovering 𝜎(𝑠) by 𝑔0 𝑡 , 𝑔20 𝑡 , 𝑔40 𝑡 ,…, 𝑔160 𝑡 .
Method of steepest descent

log ൬

൰

𝑢 𝑛 𝜑0 𝑡 , 𝑇 − 𝑡 − 𝑔0(𝑡)
2
+ 𝑢 𝑛 𝜑20 𝑡 , 𝑇 − 𝑡 − 𝑔20(𝑡)

2

+⋯+ 𝑢 𝑛 𝜑140 𝑡 , 𝑇 − 𝑡 − 𝑔160(𝑡)
2

Inverse Problem 
solution

Difference

T, 
months

K L 𝑟 𝑠 𝜎 𝑠 𝜏,
days

𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.1 𝑠 0,20,…,160 1200 0.025 900 0.01 5000



Inverse Problem data

Curve 𝜑 𝑡

T, 
monthes

K L 𝑟 𝑠 𝜎 𝑠 𝜏,
days

𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.02 0, 10, 20, 30 1200 0.025 900 0.01 5000



Inverse Problem solution. Recovering 𝜎(𝑠) by 𝑔0 𝑡 .
Method of steepest descent

log 𝑢 𝑛 𝜑0 𝑡 , 𝑇 − 𝑡 − 𝑔0(𝑡)
2

Difference

T, 
months

K L 𝑟 𝑠 𝜎 𝑠 𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.02 1200 0.025 900 0.01 5000

IP solution



Inverse Problem solution. Recovering 𝜎(𝑠) by 𝑔0 𝑡 , 𝑔10 𝑡 , 𝑔20 𝑡 , 𝑔30 𝑡 .
Method of steepest descent

log ൬

൰

𝑢 𝑛 𝜑0 𝑡 , 𝑇 − 𝑡 − 𝑔0(𝑡)
2
+ 𝑢 𝑛 𝜑10 𝑡 , 𝑇 − 𝑡 − 𝑔10(𝑡)

2

+ 𝑢 𝑛 𝜑20 𝑡 , 𝑇 − 𝑡 − 𝑔20(𝑡)
2
+ 𝑢 𝑛 𝜑30 𝑡 , 𝑇 − 𝑡 − 𝑔30(𝑡)

2

Difference

T, 
months

K L 𝑟 𝑠 𝜎 𝑠 𝜏,
days

𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.02 0,10,20,30 1200 0.025 900 0.01 5000

IP solution



Inverse Problem solution. Recovering 𝜎(𝑠) by 𝑔0 𝑡 , 𝑔10 𝑡 , 𝑔20 𝑡 ,…, 𝑔160 𝑡 .
Method of steepest descent

log ൬

൰

𝑢 𝑛 𝜑0 𝑡 , 𝑇 − 𝑡 − 𝑔0(𝑡)
2
+ 𝑢 𝑛 𝜑10 𝑡 , 𝑇 − 𝑡 − 𝑔10(𝑡)

2

+ 𝑢 𝑛 𝜑20 𝑡 , 𝑇 − 𝑡 − 𝑔20(𝑡)
2
+⋯+ 𝑢 𝑛 𝜑160 𝑡 , 𝑇 − 𝑡 − 𝑔160(𝑡)

2

Difference

T, 
months

K L 𝑟 𝑠 𝜎 𝑠 𝜏,
days

𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.02 0,10,20,…, 160 1200 0.025 900 0.01 5000

IP solution



T, 
months

K L 𝑟 𝑠 𝜎 𝑠 𝜏,
days

𝑁𝑡 ℎ𝑡 𝑁𝑠 ℎ𝑠 Iterations

3 0.9 9 0.05 0.02 0,10,20,30 1200 0.025 900 0.01 5000



Conclusion

1. The more data we apply, the more stable and close to the exact solution we 
obtain. The functional decrease faster with additional measurements for the 
same number of iterations.

2. The size of the line segment on which the functions restored depends on the 
the values of the function changing on the curve, where we measure the inverse 
problem data. For 3 additional data (we suppose that new option is issued each 
10 days) we see that size of the line segment increase from [0.9, 1.05] for 1 data 
to [0.85, 1.1]  for 3 additional measurements, to [0.85, 1.1]  for 11 additional 
measurements [10,20,…,110 days]. If we suppose that new option is issued each 
20 days and obtain that for 7 additional measurements [20,40,…,140 days] 
increase to [0.75, 1.1]. The interval of recovering unknown coefficient are 
coincide with intervals of variation of the function 𝜑 𝑡 (functions 𝜑𝜏 𝑡 ).

3. If we are going to recover the coefficient on the large the line segment  as 
possible we have to set curves for data measurement which should change over 
a sufficiently large range of its values.



Coefficient inverse problems for pharmacodynamics
Collaboration work with 

Sergey Kabanikhin, Ruslan Zhalnin, Yurii Derugin, Andrey Kozelkov

Inverse problems of medicine:
diffusion of drugs, absorption of the drug through 
the patient's skin, etc.

The skin belongs to the natural barriers that 
prevent the entry of xenobiotics into the body.

Despite the successes achieved in connection with 
the development of transdermal therapeutic 
systems and the study of skin permeability, it is 
impossible to say with certainty which structural 
elements of the skin are barriers for various drugs.



Inverse Problem Formulation



Finite-Difference Scheme Inversion





Optimization approach



Gradient Method



Nonlocal Data given in discrete time
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Thank you for attention!


