

Радионуклидный экспресс-анализ при контроле ядерных материалов и изотопных источников

H.B. Ивашкин e-mail: <u>n.v.ivashkin@vniitf.ru</u>

Российский Федеральный Ядерный Центр – Всероссийский научно-исследовательский институт технической физики им. академ. Е.И. Забабахина,

Снежинск, Россия

Содержание

- 1. Вводная часть: проблематика контроля и радионуклидный экспресс-анализ
- 2. Радиационные характеристики ЯМ и высокоактивных изотопных источников
- 3. Методы и аппаратура экспресс-анализа
- 4. Примеры практического применения
- 5. Заключение

1 Вводная часть: проблематика контроля и радионуклидный экспресс-анализ

1.1. Цель и сферы контроля.

Цель контроля в обобщённом виде - обеспечение экологической (ядерной, радиационной) безопасности персонала, населения и среды обитания при использовании ядерной энергии.

Сферы контроля:

- ядерный топливный цикл (ЯТЦ) и ядерно-оружейный комплекс (ЯОК);
- ✤ легальный и нелегальный оборот, экспорт/импорт ЯМ и изотопных источников;
- * испытания ядерных взрывных устройств;
- ✤ контроль зон, свободных от ядерного оружия.
- 1.2. Актуальность совершенствования технологий контроля производства, применения и обращения ядерных материалов и изотопных источников:
- наличие предпосылок ядерного распространения (появлением де-факто новых ядерных государств);
- ✤ усиление угрозы радиологического терроризма в условиях развития ядерных технологий и в особенности, электроэнергетики, в развивающихся странах;
- потенциальная опасность возникновения радиационных аварий на расширяющемся числе ядерных объектов ЯТЦ и ЯОК;
- ✤ расширение рынка медицинского применение радиоизотопов и развитие ядерной медицины.

1.3 Особенности радионуклидного экспресс-анализ как элемента технического сегмента системы контроля:

- получение прямой информации о наличии, изотопном составе и характеристиках излучений объектов контроля;
- возможность обеспечения инспекций на месте путём проведения измерительных операций с применением неинтрузивных методов и технических средств (включая переносные) на мобильных носителях;
- > более низкая, стоимость и высокая производительность проведения измерений;
- неразрушающий анализ образцов на месте и съёмка объектов методами дистанционной гамма-спектрометрии;
- использование инструментальных (без применения радиохимии) методов альфа-, гамма-спектрометрии и бета-радиометрии проб.

1.4 Контролируемые материалы, радионуклиды и высокоактивные изотопные источники

- 1. Ядерные материалы (Исходные и специальные расщепляющиеся материалы как определено в статье ХХ Устава МАГАТЭ):
 - 1.1. Исходный материал: U уран природный (0,72 % ²³⁵U), DU уран обеднённый (0,2-0,3% ²³⁵U), Th;
 - **1.2.** Специальный расщепляющийся материал: ²³⁹Pu (≤ 80% ²³⁸Pu), ²³³U, ²³⁵U (BOU-≥20% ²³⁵U)
- **2.** Нуклиды (Исходный экспорт-контрольный список РФ): ²³⁷Np, ²⁴¹Am, ²⁴³Am, ²⁵²Cf.
- 3. Изотопные источники:
 - Облучатели промышленные (⁶⁰Co, ¹³⁷Cs, ¹⁹²Ir);
 - Радиоизотопные электрические генераторы (РИТЭГ: ⁹⁰Sr, ²¹⁰Po, ²³⁸Pu);
 - Лучевая терапия (гамма-нож: ⁶⁰Co, ¹³⁷Cs, ¹⁹²Ir);
 - Скважинная геофизика (²⁴¹AmBe, ²³⁹PuBe, ²²⁶RaBe, ²⁵²Cf);
 - Рентгено-флюоресцентные анализаторы. Источники для ядерной медицины (терапия, томография).

2. Радиационные характеристики ядерных материалов и радионуклидов

Таблица 1 – 🛾	Характеристики альфа,	-квантовых излучений изотопов исходных,	специальных ЯМ и нуклидов***
---------------	-----------------------	---	------------------------------

Нукрил	Альфа излучение		Гамма-излучение		Рентгеновское Х _К (Х _L) излучение	
туюлд	Энергия, кэВ	Выход (α/расп.), %	Энергия, кэВ	Выход (кв./расп.), %	Энергия, кэВ	Выход (кв./расп.), %
233U	4823/4779	83/15	42,4/164,5	8,6·10 ⁻² /6,6·10 ⁻³	93,3; (15,7*)	1,2.10-2; (5,3**)
²³⁴ U	4768/4717	72/28	53,2/120,9	1,2 ·10 ^{-1/} 3,4·10 ⁻²	93,3; (15,3*)	4,4·10 ⁻³ ; (10,2**)
235 U	4370/4354	25/35	143,8/185,7	10,96/57,2	89,9/93,3; (15,3*)	3,56/5,76; (22**)
238	4195/4145	77/23	63 (²³⁴ Th)/1002 (^{234m} Pa)	4,8/8,4·10 ⁻¹	93,3; (15,3*)	1,8·10 ⁻³ ; (7,94**)
²³⁷ Np	4788/4771	46/20	86,5/143,2	12,4/4,3·10 ⁻¹	95,9; (13,29)	2,9; (18,7)
²³⁸ Pu	5499/5456	71/29	43,5/99,8	4,0·10 ⁻² /7,0·10 ⁻³	94,6/98,4; (13,56)	1,0·10 ⁻⁴ /1,7·10 ⁻⁴ ;
²³⁹ Pu	5157/5144	73/15	375,0/646,0	1,56·10 ⁻³ /1,5·10 ⁻⁵	94,6/98,4; (13,58)	6,9·10 ⁻³ ; (1,5)
²⁴⁰ Pu	5168/5124	73/27	104,2/642,3	7,1·10 ⁻³ /1,4·10 ⁻⁵	98,4; (13,58)	1,0·10 ⁻⁴ ; (3,6)
²⁴¹ Pu	4896	2,0·10 ⁻³	103,7/148,6	1,0·10 ⁻⁴ /1,9·10 ⁻⁵	100,5; (16,0)	*1,0·10 ⁻³ ; **(7·10 ⁻⁴)
²⁴¹ Am	5486/5443	85/13	59,5/662,0	35,9/3,6·10 ⁻⁴	101,1; (17,8)	1,9·10 ⁻³ ; (20,0)
²⁵² Cf	6118/6075	81,7/15,1	43,4/100,2	1,5·10 ⁻² /1,2·10 ⁻²	109,3; (18*)	4,0·10 ⁻⁵ ; (6,1**)
* средняя энергия <e<sub>XL>; **суммарный выход ∑ I_{XL}</e<sub>						

***Чечев В.П., Кузьменко Н.К., Сергеев В.О., Артамонова К.П. Оцененные значения ядерно-физических характеристик трансурановых радионуклидов. – Справочник. М.: Энергоатомиздат, 1988.

Нуклид	Удельная активность, Бк/г	Удельный выход, (n/c·r)	Химическое соединение	Удельный выход, (n/c·г)
233U	3,6·10 ⁸	4,3·10 ⁻⁴	²³⁴ UF ₆	3,9·10 ²
²³⁴ U	2,3·10 ⁸	7,8·10 ⁻³	UF ₆ (90% ²³⁵ U)	3,4
235U	8,0·10 ⁴	1,1·10 ^{- 5}	UO ₂ (90% ²³⁵ U)	2,3 (расчет)
238U	1,2·10 ⁴	1,4·10 ⁻²	²³⁸ UF ₆	10,1
²³⁷ Np	2,6·10 ⁷	1,2.10-4	UO ₂ (4,4 % ²³⁵ U)	1,2·10 ⁻² (расчет)
²³⁸ Pu	6,3·10 ¹¹	2,6·10 ³	²³⁸ PuO ₂	1,3·10 ⁴
²³⁹ Pu	2,3·10 ⁹	2,2·10 ⁻²	²³⁹ PuO ₂	40 (расчет)
²⁴⁰ Pu	8,4·10 ⁹	1,0·10 ³	²³⁹ PuF ₄	4,6·10³
²⁴¹ Am	1,3·10 ¹¹	1,2	²⁴¹ AmO ₂	2,5·10 ³
²⁵² Cf	2,0⋅10 ¹³	2,3·10 ¹²	²³⁹ PuBe ₁₃	5,7·10 ⁴

Таблица 2 - Удельные активности изотопов; выходы нейтронов спонтанного деления и (α, n)-реакций *

* Ф.Ф. Фролов. Ядерно-физические методы контроля делящихся веществ. М.: Энергоатомиздат, 1989, с.177.

Таблица 3 – Контролируемые количества ядерных материалов, высокоактивных изотопных источников и радиологические последствия крупнейших аварий

Материалы / нуклиды Г		Троцесс образования Оце		ночные количественные характеристики		
Ри оружейного качества О		Облучение урана в реакторах		~10 ¹⁸ Бк; ~ 250 т; тысячи единиц		
Ри, накопленный в ОЯТ Нара		ботка в топливе АЭС	<u>~6 10¹⁸</u> Бк; ~ 2000т; сотни мест; накопление ~100 т/год			
Ри, выделенный из облученного Ра, топлива АЭС Вы		охимическое (РХ) еление (экстракция)	≻ ~ <u>6 10¹⁷</u> Бк; ~ 200 т; десятки мест хранения			
ВОУ оружейного качества	Изот	топное обогащение > ~3.1015		Бк; ~ 2000 т; тысячи единиц		
Обедненный уран	Отхо	ды обогащения урана	≻ ~10¹ ⁶ E	к; 10⁵ т; сотни мест хранения		
Тритий	Реак	Реакторное облучение > ~100		(удельная активность – 3,6·10 ¹⁷ Бк/кг)		
Радиоизотопные источники (⁶⁰ Co, ¹³⁷ Cs, ¹⁹² Ir, ⁹⁰ Sr, ²³⁸ Pu)	е источники , ⁹⁰ Sr, ²³⁸ Pu) Реакторное облу выделение из ОЯ		~10 ¹⁹ Бк; ед. образец – до ~4·10 ¹⁷ Бк (⁹⁰ Sr в РИТЭГ); тысячи единиц			
γ-источники для ядерной медицины (⁶⁰ Co, ¹³⁷ Cs, ^{125,131} I…)	Реак облу	торное и циклотронное чение, РХ-выделение	тах на единичный образец до ~10 ¹⁴ Бк (¹³¹ I); тысячи единиц			
Отработанное ядерное топливо	Реак	торное облучение	≻ <u>2 10¹</u> 9 Б	к; ∼2 10¹³ Бк/кг (3-х летняя выдержка)		
Химкомбинат «Маяк» (СССР), 19	57 г.	Взрыв емкости ВАО		★ <u>7,4·10¹⁶</u> (Σ); 2,0·10 ¹⁵ (⁹⁰ Sr)		
Уиндскейл (Англия), 1957 г.		Расплавление твэл (ЯР наработчик Pu)		✤ 7.4·10 ¹⁴ (¹³¹ I); 2,2 10 ¹³ (¹³⁷ Cs)		
АЭС Три Майл Айленд» (США), 1979 г.		Пожар, расплавление АЗ реактора		✤ 5 10 ¹¹ (131I); 1,5 10 ¹⁰ (137Cs)		
Чернобыльская АЭС, (СССР), 1986 г.		Расплавление АЗ, взрыв энергоблока		★ <u>~2·10¹⁸</u> (Σ); 6,4·10 ¹⁶ (¹³⁷ Cs)		
АЭС«Фукусима-1» (Япония), 2011 г.		Расплавление взрыв энергоблока				
> Оценка суммарных (общемировых) количеств; Σ – Суммарная активность аварийного выброса (Бк)						

3. Методы и аппаратура экспресс-анализа

3.1 Характеристика методов

Основные методы:

- Дистанционная γ-спектрометрия излучения объектов на месте с борта носителей различного типа;
- Οтбор проб контролируемых объектов и γ, α спектрометрия на месте в передвижной полевой лаборатории;
- Ηеразрушающий γ-спектрометрический анализ и нейтронные измерения ядерных материалов.

МДА - минимально детектируемая активность;

МДА = [2.71 + 4.66 (S_{$$\phi n$$})^{1/2}] / ($\tau \cdot \mathbf{m} \cdot \mathbf{n}_{\gamma} \cdot \varepsilon_{\phi}$),

*S*_{φn} - площадь "пьедестала" под фотопиком; *τ*- время экспозиции (с); *т* - масса образца (кг);

п₇ - квантовый выход гамма линии, квант/распад;

Таблица 4 – Относительная (по отношению к аналитическим методам) чувствительность методов гамма-мониторинга объектов окружающей среды

	Почва		Поверхностные выпадения		Прямая ү-спектрометрия проб	
Нуклид	Аэрогамма- съемка	Наземная γ-спектрометрия	Аэрогамма-съемка	Наземная γ-спектрометрия	Почва, отложения	Вода, раствор
¹³⁷ Cs	2⋅10 ⁻²	0,3	~ 10 ⁻³	1⋅10 ⁻³	0,4	5⋅10 ⁻²
235U	2·10 ⁻⁴	~ 10 ⁻³	3·10 ⁻⁶ (ВОУ)	<mark>∼ 10</mark> -⁵	~ 10 ⁻³	
238U	3⋅10 ⁻²	4⋅10 ⁻³	~ 10 ⁻⁷ (DU)	3·10⁻⁵	3⋅10 ⁻³	<mark>∼ 10</mark> -⁵
Pu, ²⁴¹ Am	2·10 ⁻⁴	5·10 ⁻⁴	5·10⁻ ⁶	∼ 10 ⁻⁶	2⋅10 ⁻³	

(3)

3.2 Радионуклидная аномалия (РНА) как признак и объект контроля:

- Особенность применения экспресс-анализа исследовании характеристик радионуклидных аномалий (PHA), обусловленных наличием следовых (околофоновых) и весовых количеств радионуклидов непосредственно на месте за ограниченное время.
- Контрольное исследование включает решение задач обнаружения (поиска и локализации) РНА в заданном районе и её идентификации путем установления изотопного состава и активности источников.
- В качестве обобщенной оценки эффективности обнаружения (k_{обн.}) может быть использовано отношение концентраций характерного уровня фона радионуклида-индикатора в соответствующем объекте окружающей среды к уровню порога его детектирования.

к_{обн.} = с_{фон.} / МДК,

где сфон. – фоновая концентрация в пункте контроля;

МДК - минимально детектируемая концентрация радионуклидов, образующих РНА.

Значение k_{обн.} ≥ 1 свидетельствует о том, что чувствительность системы детектирования достаточна для регистрации околофоновых концентраций радионуклидов.

Таблица 5 - Оценка относительных коэффициентов обнаружения k_{обн.} радионуклидов в объектах окружающей среды

Радионуклиды	Атмосферный воздух	Водный бассейн	Почва, отложения
зН	110	10 ³ 3·10 ³	-
⁹⁰ Sr	0,0130	5⋅10³…10 ⁶	50
¹³⁷ Cs	3⋅10 ⁻³ …0,1 (0,3*)	10 2·10 ³	300
235U	0,011,0	10 ² 5·10 ³	1,32
234, 238U	≈ 30	<mark>≈ 2</mark> ·10⁵	3050
Pu,	5·10 ⁻³ 0,1	≈ 3·10³	5
²⁴¹ Am	10 ⁻⁴ 0,03	≈ 10²	1,5

3.3 Системы детектирования

Нуклиды в составе радиоактивных материалов являются источниками корпускулярного (α, β, n, осколки деления) и квантового (γ, X, тормозного) излучений. Все эти виды излучений (строго говоря, кроме рентгеновского (X) и, особенно, тормозного) относятся к ядерным излучениям, т.к. их происхождение связано с превращениями в ядрах атомов вещества.

Средства детектирования излучений при обнаружении/идентификации РНА включают малогабаритные (в т.ч., носимые) приборы, модули бортового базирования на воздушных наземных, водных носителях, а также автономные приборные средства и строятся по схожей схеме (рис. 1).

Рис. 1 - Блок-схема системы регистрации ядерных излучений контролируемых объектов

Рис. 2 - Блоки и модули детектирования гамма-излучения

3.4 Дистанционная гамма-спектрометрия (неразрушающий анализ) ядерных материалов с использованием полупроводниковых детекторов на основе особо чистого (ОЧГ) германия (НР Ge)

тис. 5 – тамма-спектры урана (слева) и плутония (справа) оружейной традации (удаление - тм), и фона детектора

*/J. Medalia. Detection of Nuclear Weapons and Materials: Science, Techologies, Observations. Congressional Research Service, Nov.2008, pp.4-5 /.

4. Примеры практического применения

4.1 Исследование имплозии в RaLa экспериментах Лос-Аламоса (1944-62 г.г.)

В <u>1944</u> году после окончания академии Е.И. Забабахин продолжил учёбу в адъюнктуре. Тема диссертации (защита в <u>1947</u> г.) - исследование процессов в сходящейся ударной волне. Евгений Иванович один из самых авторитетных специалистов по газодинамике взрыва и активных участников отработки, испытания советской атомной бомбы.

Первое применение радионуклидного анализа при исследовании имплозии*: RaLa эксперименты (1944-62 г.г.) измерение равномерности генерируемой взрывной волны (каньон Байо Лос-Аламосского комплекса) в период кризиса, связанного с ²⁴⁰Pu. Идея – Р. Сербер (1943), руководитель – Б. Росси. Участник - Т. Холл (агент СССР)**. Регистрировалось гамма-излучение¹⁴⁰La образцов (1,8 мг; 1000 Ки / 7ТБк,), подвергая их имплозии. Применялись пропорциональные счётчики (8 шт.; диаметр-5 см, длина -76 см, 4,5 атм. Аг+СО₂); позднее и жидкие сцинтипляторы.

Детонатор Детонационная волна

Блоки бризантного ВВ

«Быстрый ВВ (ТАТБ)» «Медленный ВВ» (бартол) Толкатель (tamper), U-природный Инициатор (Po-Be)

- Ядро (6 кг 239Pu)

Рис.6 - Схема первых образцов ядерных взрывных устройств имплозивного типа* (Gadget/Trinity, Fat Men; РДС-1)

*(D. Rhodes. The making of the Atomic Bomb. A TOUCHSTONE BOOK, 1986. p.575)

4.2 Гамма-спектрометрия при анализе излучений ядерной боеголовки (1989 г.) и шлаковой пробы ПЯВ (1998 г.)

4.3 Прямая гамма, - альфа-спектрометрия образцов тестовой пробы и «толстого» слоя урана

4.4 Гамма – спектры радионуклидов в почвах природной среды, зарегистрированные с использованием сцинтиляционного и полупроводникового детекторов

4.5 Определения удельного содержания ⁹⁰Sr в пробах почвы прямым инструментальным методом (ПИМ).

ПИМ основан на измерениях суммарной β-активности препаратов проб и γ-спектрометрическом определении удельного содержания ¹³⁷Cs и природных радионуклидов в пробах.

Предельная чувствительность ПИМ составляет величину а_{β,min}(⁹⁰Sr) ≈ 50 Бк/кг, соответствующая плотность загрязнения почвы - А_s (⁹⁰Sr)≈0,3 Ки/км² (10 кБк/м²).

Рис. 15 - Модельный рельеф плотности выпадений ⁹⁰Sr в средней части ВУРСа на момент взрыва* */В.В. Власов, Н.В. Ивашкин, А.Л. Карманов. Препринт РФЯЦ-ВНИИТФ №254, 2016 г./

5. Заключение

Радионуклидный экспресс-анализ является одним из ключевых компонентов технической системы контроля ядерных материалов и высокоактивных источников в гражданском и оружейном циклах в целях обеспечения локальной и всеобщей безопасности.

Использование данного вида анализа предпочтительно при проведении контроля многочисленных объектов в режиме инспекций на месте.

Уступая в ряде случаев по чувствительности детектирования методам и техническим средствам стационарных аналитических лабораторий, экспресс-анализ на месте с использованием автономных модулей обладают достаточной избирательностью и преимуществами по времени и стоимости при массовых измерениях.

Наиболее информативный метод - дистанционная гамма-спектрометрия и неразрушающий анализ при исследовании объектов и проб на месте, может трансформироваться в зависимости от требований обеспечения неинтрузивности в системах контроля за соблюдением двусторонних, многосторонних и международных соглашений.