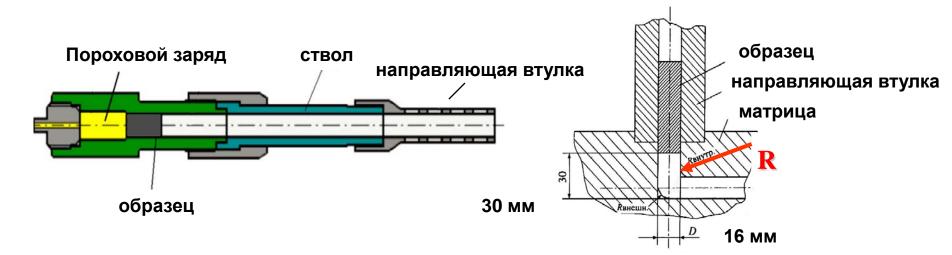
СВОЙСТВА СУБМИКРОКРИСТАЛЛИЧЕСКИХ СПЛАВОВ НА ОСНОВЕ МЕДИ, ПОЛУЧЕННЫХ МЕТОДОМ ДКУП

И.В. Хомская¹, В.И. Зельдович¹, Е.В. Шорохов², С.В. Разоренов², Н.Ю. Фролова¹, А.Э. Хейфец¹, Д.Н. Абдуллина¹

¹Институт физики металлов имени М.Н. Михеева Уральского отделения РАН, Екатеринбург

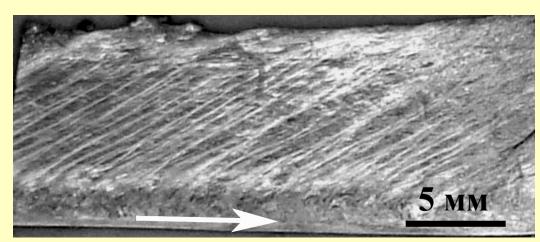

² Российский Федеральный ядерный центр— ВНИИ технической физики, имени академика Е.И. Забабахина, Снежинск

³ Институт проблем химической физики РАН, Черноголовка

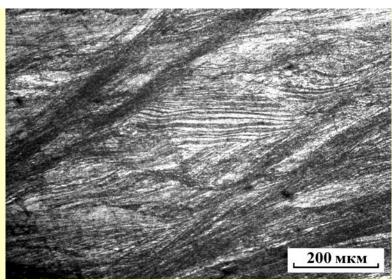
Схема динамического канально-углового прессования (ДКУП)

МАТЕРИАЛЫ: экономно-легированные дисперсионно-твердеющие сплавы Cu-0,03%Zr; Cu-0,06%Zr; Cu-0,1%Cr; Cu-0,2%Cr; Cu-0,08%Cr-0,09%Zr и Cu-0,14%Cr-0,04%Zr

(исходный размер зерна 200-400 мкм; *HV*=600-680 МПа);

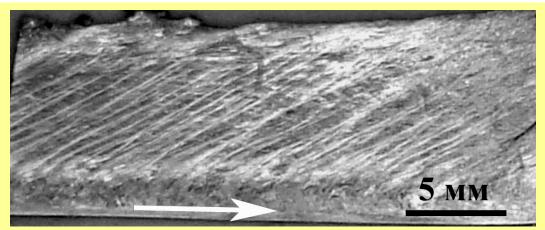

ОБРАЗЦЫ: d=16 мм, длина=65 -160 мм;

ПАРАМЕТРЫ ДКУП:

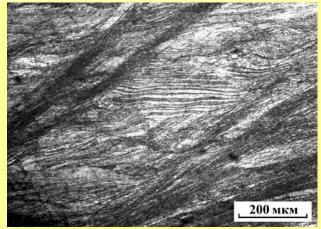

- Разгон образца при помощи порохового заряда.
- Матрицы из 2-х каналов диаметром 16 и 14 мм, пересекающихся под углом 90° (радиус закругления внутреннего угла пересечения каналов: R=0.)
- Скорость разгона образцов (V_0) 230-250 м/с.
- -Скорость деформации материала 10⁴-10⁵ с⁻¹.
- -Количество циклов прессования n = 1-4
- <u>-Длительность одного цикла 5 · 10⁻⁴ с</u>.
- -Давление в области угла поворота ≤1,5-2 ГПа.

Патент РФ 2006 г. (№ 2283717). «Способ динамической обработки материалов» авторы: Шорохов Е. В., Жгилев И.Н. (РФЯЦ-ВНИИТФ, Снежинск), Валиев Р.З. (УГАТУ, Уфа)

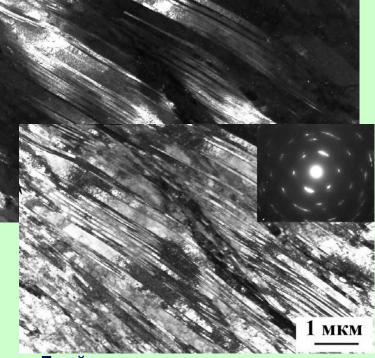
Структура низколегированных сплавов Cu-Cr-Zr после ДКУП, n=3

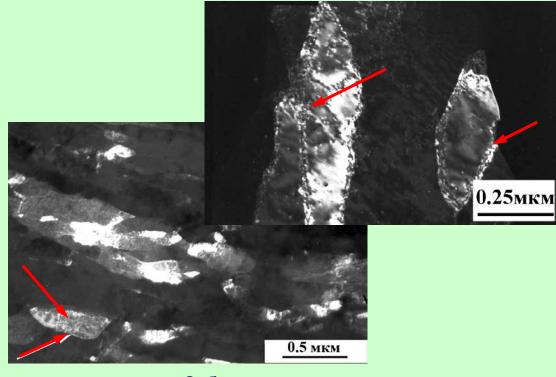


Полосы локализованного сдвига

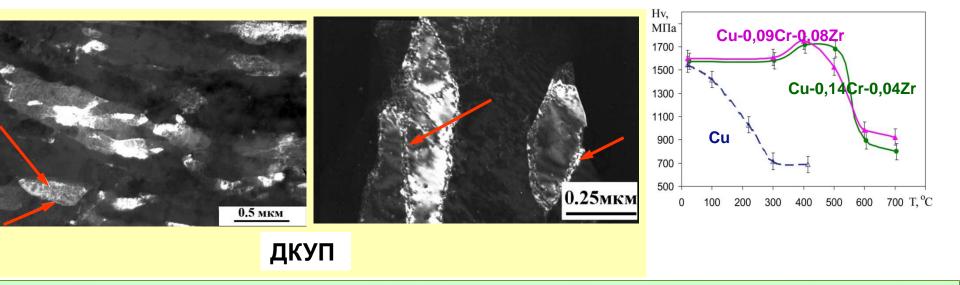


Волокнисто-полосовая структура

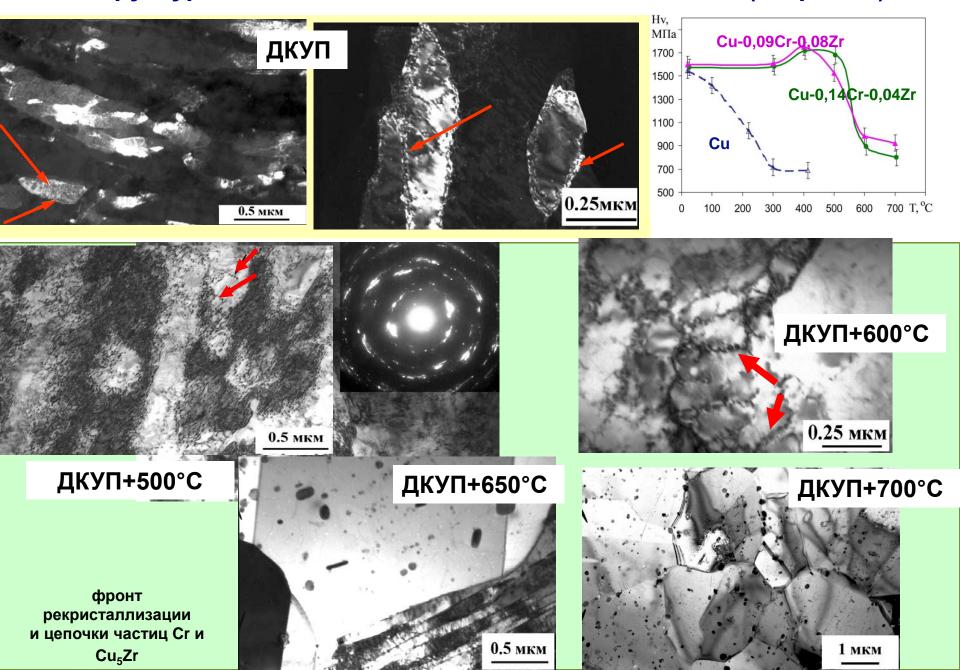

Структура низколегированных сплавов Cu-Cr-Zr после ДКУП


Полосы локализованного сдвига

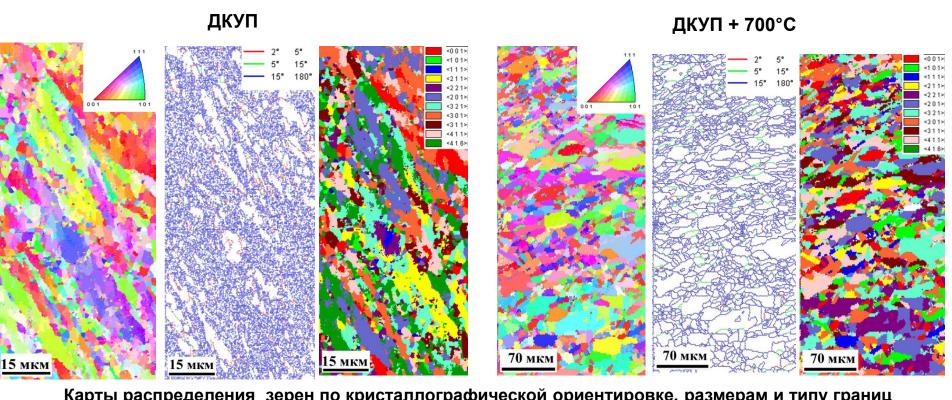
Волокнисто-полосовая структура

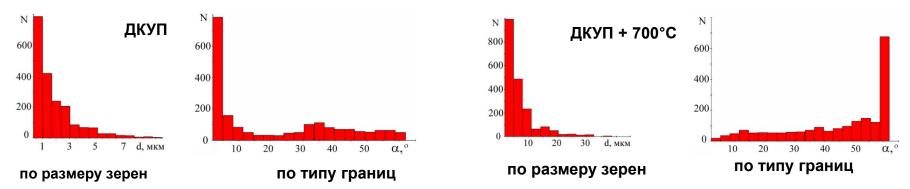


Двойники в полосах локализованного сдвига

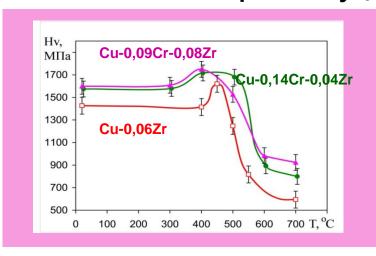


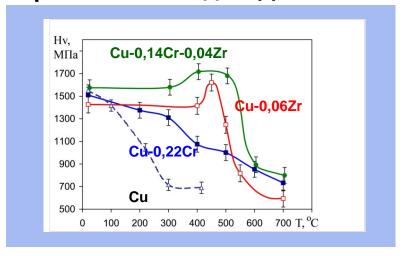
Субзерна внутри волокон


Структура сплавов Cu-Cr-Zr после ДКУП и отжига (старения)


Структура сплавов Cu-Cr-Zr после ДКУП и отжига (старения)

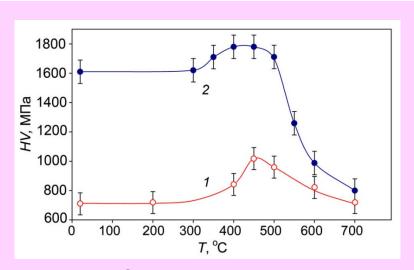
Результаты EBSD анализа эволюции структуры сплава Cu-0,21Cr-0,20Zr после высокоскоростной деформации методом ДКУП и отжига

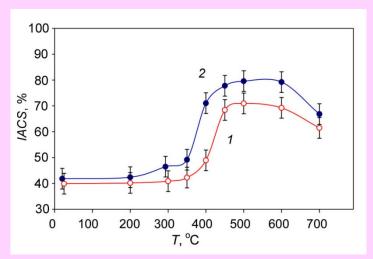



Карты распределения зерен по кристаллографической ориентировке, размерам и типу границ

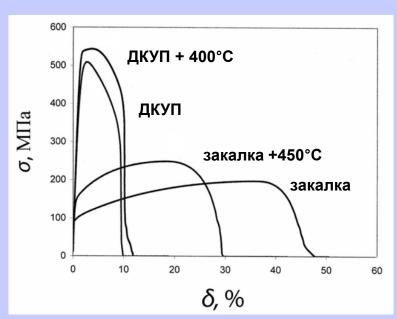
Гистограммы распределения зерен

Термическая стабильность сплавов Cu-Cr, Cu-Zr, Cu-Cr-Zr, подвергнутых высокоскоростному деформированию методом ДКУП




Сплав,							
содержание легирующих			C	<u>max ∆Hv,</u> ΜΠa			
элементов, %	закалка	ДКУП	300	400,14	400,4ч	450,14	171110
Cu-0,09Cr-0,08Zr	680	1600	1600	1750	1880	-	1200
Cu-0,14Cr-0,04Zr	700	1600	1600	1780	1880	1780	1180
Cu-0,21Cr-0,20Zr	680	1580	1580	1720	-	1700	1040
Cu-0,06Zr	600	1430	1430	1430	1520	1630	1030
Cu-0,22Cr	680	1510	1310	1075	1000	-	830
Cu (99,8)	отжиг 680	1550	720	680	-	-	870

Отжиги при 400 (450°С) повышают микротвердость сплавов меди, деформированных ДКУП, что связано с процессами распада пересыщенного ситвердого раствора меди, сопровождающимся выделением наноразмерных частиц вторых фаз.


Увеличение температуры отжига до 500-600°С приводит к снижению микротвердости, что обусловлено развитием процесса рекристаллизации

Прочность и электропроводность сплава Cu-0,14Cr-0,04Zr после различных обработок

Зависимость микротвердости и электропроводности сплава от температуры старения 1- закалка от 1000°С; 2 - ДКУП, n=4.

Режимы обработки	σ _{0.2} , ΜΠα	σ _в , ΜΠа	δ, %
закалка от 1000°C	94	196	37
закалка+ДКУП, n=4;	312	507	10
ДКУП + старение 400°С, 1 ч.	464	542	10
ДКУП + старение 400°С, 4 ч.	464	536	13
ДКУП + старение 450°С, 1 ч.	477	520	11

За счет комбинированной обработки: ДКУП +старение 400°C. микротвердость (HV) сплава повышается в 2,4-2,6 раза,

ОВ и **О**0.2 в увеличивается в 2,8-5,1 раза, по сравнению с исходным КК состоянием при сохранении удовлетворительной

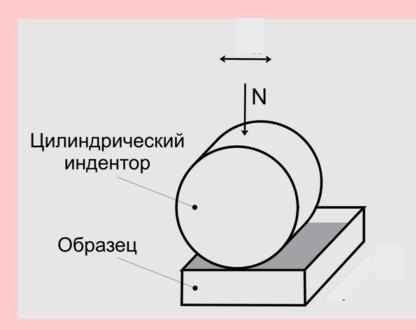
Интенсивная пластическая деформация трением скольжения

Решение проблемы дальнейшего существенного повышения трибологических и служебных свойств конструкционных и функциональных СМК материалов может быть связано с созданием НК структур в тонком (10 мкм) поверхностном слое методом ИПД трением скольжения. То есть фрикционное воздействие можно рассматривать в качестве одного из эффективных и относительно простых способов создания в металлах и сплавах НК состояния с высокими прочностными и эксплуатационными свойствами. Поэтому представляло интерес изучить влияние предварительной деформации ДКУП и температуры старения на эволюцию структуры, упрочнение и износостойкость низколегированного электротехнического сплава Cu-Cr-Zr

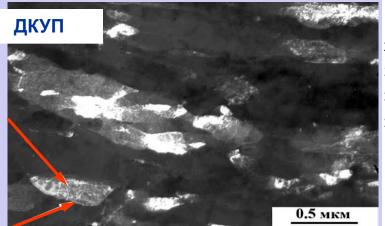
Трибологические испытания образцов сплава Cu-0,09Cr-0,08Zr с CMK структурой, полученной ДКУП и ДКУП и старением при 400-700°C проводились в условиях трения скольжения по схеме — пластина (образец) - цилиндрический индентор (контртело) из твердого сплава ВК-8 диаметром 4 мм, высотой 4 мм на экспериментальной установке изготовленной на базе поперечно-строгального станка типа 7А33.

Фрикционное деформирование осуществлялось в воздушной среде без смазки при нагрузке 196 Н и скорости скольжения 0,014 м/с; число циклов (двойных ходов индентора) -1000, путь трения — 900см. Предварительно рабочая поверхность образца полировалась, индентора- шлифовалась.

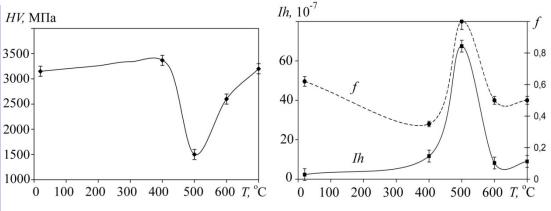
В процессе истирания непрерывно измеряли силу трения. Коэффициент трения (f) определяли как отношение средних (за время испытания) интегральных значений силы трения к нормальной нагрузке


$$f=F/N$$
,

где *F* - сила трения; *N* – нагрузка.

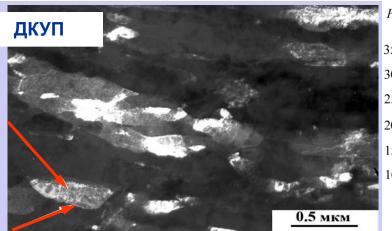

Погрешность измерений f составляла \pm 5%.

Интенсивность изнашивания (*Ih*) рассчитывали по формуле:

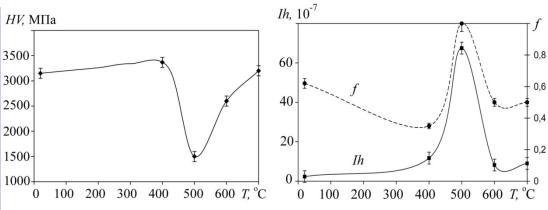

$$Ih = rac{\Delta Q}{\rho \cdot l \cdot s}$$
 где ΔQ – потеря массы образца, ρ – плотность, s – геометрическая площадь контакта, l – путь трения.

Трибологические свойства сплава Cu-0,09Cr-0,08Zr после различных обработок

СМК структура, размер 200-400 нм; $HV=1600 \text{ M}\Pi \text{a} (f=0,50)$

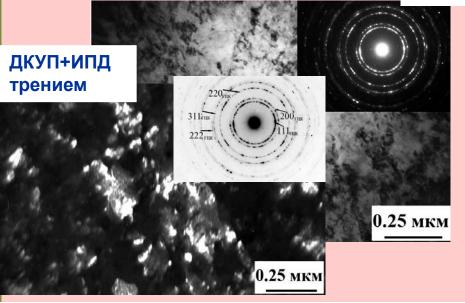


Значения интенсивности изнашивания (\it{lh}) и коэффициент трения (\it{f}) образцов с исходной КК структурой составляли 3,1·10⁻⁷ и 0,5.

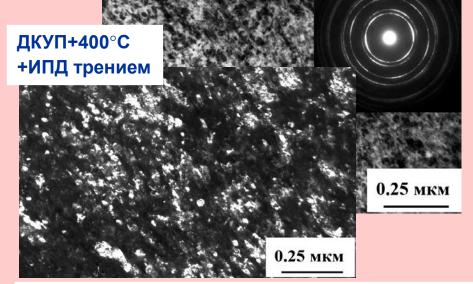

 $\it Ih$ СМК структуры, полученной ДКУП - 2,3·10⁻⁷, что в 1,4 раза меньше, чем $\it Ih$ КК состояния, а $\it f$ увеличивается до 0,62. Мах $\it HV$ =3350МПа и min $\it f$ =0,35 получены в образцах после ДКУП+400°С.

НК структура, размер кристаллитов 15-30 нм; $HV=3350~M\Pi a, (f=0,35)$

Трибологические свойства сплава Cu-0,09Cr-0,08Zr после различных обработок



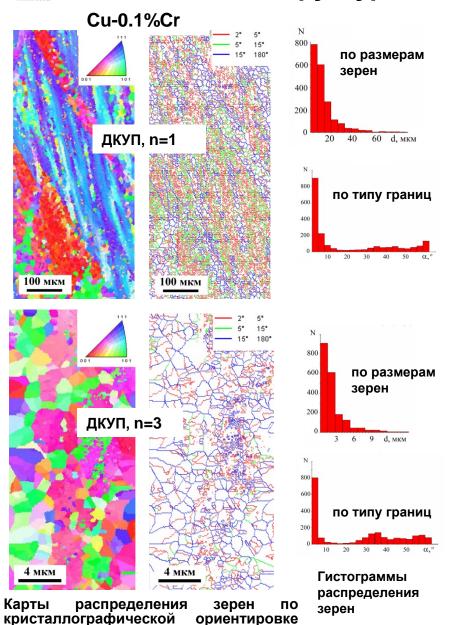
СМК структура, размер 200-400 нм; $HV=1600 \text{ M}\Pi \text{a} (f=0,50)$



Значения интенсивности изнашивания (\it{lh}) и коэффициент трения (\it{f}) образцов с исходной КК структурой составляли 3,1·10⁻⁷ и 0,5.

 $\it Ih$ СМК структуры, полученной ДКУП - 2,3·10⁻⁷, что в 1,4 раза меньше, чем $\it Ih$ КК состояния, а $\it f$ увеличивается до 0,62. Мах $\it HV$ =3350МПа и min $\it f$ =0,35 получены в образцах после ДКУП+400°С.

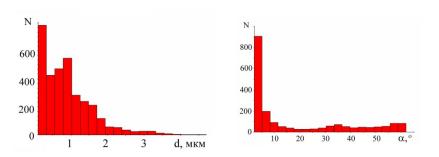
НК структура, размер кристаллитов 40-50 нм; $HV=3200~M\Pi a~(f=0,62)$



НК структура, размер кристаллитов 15-30 нм; $HV=3350 \text{ M}\Pi \text{a}, (f=0,35)$

типу границ и размерам

Результаты EBSD анализа сплавов Cu-0.1%Cr и Cu-0,03%Zr с CMK структурой, полученной методом ДКУП


Си-0.03%Zr ДКУП, n=3

2° 5° 15°
15° 180°

20 мкм

20 мкм

Карты распределения зерен по кристаллографической ориентировке, типу границ и размерам

Гистограммы распределения зерен по размерам и типу границ

Динамические свойства меди при испытании на ударное сжатие

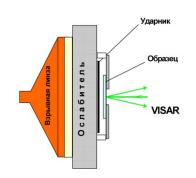
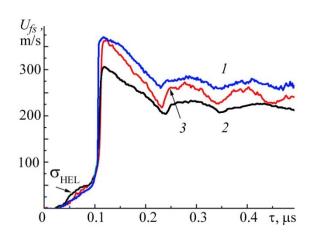



Схема ударно-волнового нагружения

- •Р тах ударного сжатия образцов 5,6-6,9 ГПа, скорость деформирования в разгрузочной части волны сжатия перед откольным разрушением (0,9-2,0)·10⁵ с⁻¹.
- •Регистрацию профилей скорости свободной поверхности Ufs(t) осуществляли при помощи лазерного Доплеровского измерителя скорости VISAR, имеющего временное разрешение ~ 1 нс и пространственное ~0.1 мм².

Волновые профили образцов меди:

- 1 исходная КК структура (100 мкм);
- 2 СМК структура (0,2-0,5 мкм) после ДКУП, n=1; 3 –СМК+НК структура (0,05-
- 0,40 мкм) после ДКУП, n=4.

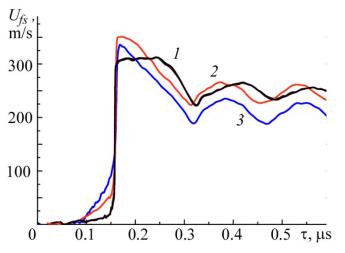
Nº п/п	Режимы обработки; размер зерна	Pmax, ГПа	Ufs max, м/с	U <i>не</i> L, м/с	ΔUfs, м/c	σнец, ГПа	Ү, ГПа	σsp, ГПа	hsp, мм
1	Исх. состояние (отжиг, 450°C); КК структура (100 мкм)	6.82	365	-	109	0.10	0.05	1.86	0.28
2	ДКУП, n=1; СМК структура (0,2-0,5 мкм)	5.60	303	30	104	0.62	0.30	1.79	0.26
3	ДКУП, n=4; СМК+НК структура (0,05-0,40 мкм)	6.62	362	33	148	0.71	0.30	2.51	0.26

Показано, что ДКУП, n=1 меди, приводящее к измельчению зерна от 100 до 0.5 мкм, в 6 раз увеличивает **ОНЕ** и **У** меди. Формирование СМК+НК структуры с размером зерен 50-350 нм при ДКУП, n=4 увеличивает **ОР** меди в 1.4 раза, по сравнению с исходным КК состоянием.

Отметим, что **σsp** меди с СМК+НК структурой составляет 2510 МПа, что в 5.7 раз превышает **σ**в меди (440 МПа).

Обозначения:

Ртах — максимальное давление ударного сжатия Ufsmax — максимальная скорость свободной поверхности UHEL — скорость поверхности на фронте упругого предвестника ΔUfs — величина спада скорости от максимума до первого минимума в момент откола


ОНЕL – динамический предел упругости

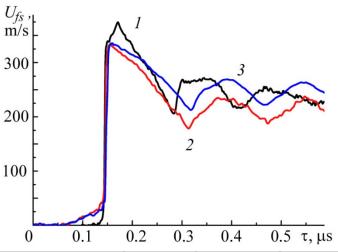
Y – динамический предел текучести

Оsp – динамическая (откольная) прочность **hsp**– толщина откольной пластины

Влияние дисперсности микроструктуры на волновые профили и динамические свойства образцов сплава Cu-0.1%Cr

1-КК структура, 200-300 мкм (закалка от 1000°С) 2-МК структура, 1- 5 мкм (ДКУП, n=1) 3- СМК структура, 0.2-0.4 мкм (ДКУП, n=3)

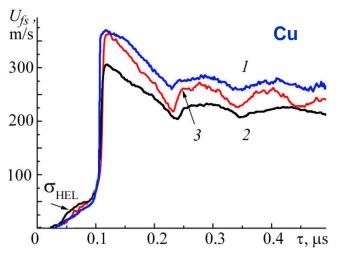
№ п/п	Режим обработки, тип структуры и размер зерна	Pmax, ГПа	Ufs max, м/с	UHEL M/C	ΔUfs, м/c	σ _{HEL} , ΓΠα	Y, ГПа	σ _{SP} , ГПа	hsp, мм
1	Исх. состояние, закалка 1000°C, КК (200-400 мкм)	5.73	310	8.7	90	0.19	0.12	1.90	0.37
2	ДКУП, n=1, МК (1-5 мкм)	6.52	350	26.4	129	0.54	0.21	2.40	0.33
3	ДКУП, n=3,СМК (0.2-0.4 мкм)	6.20	334	33.5	146	0.70	0.31	2.76	0.34


Pmax-max max max

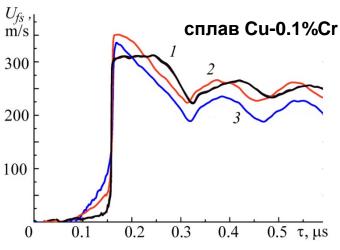
ОНЕL – динамический предел упругости; Y – динамический предел текучести

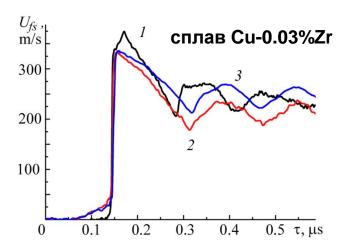
 σ_{SP^-} динамическая (откольная) прочность; hsp- толщина откольной пластины

Влияние дисперсности микроструктуры сплава Cu-0.03%Zr на волновые профили образцов и динамические свойства


1-КК структура, 200-300 мкм (закалка от 1000°С) 2-МК структура, 1- 5 мкм (ДКУП, n=1) 3- СМК структура, 0.2-0.4 мкм (ДКУП, n=3)

№ п/п	Режим обработки и структура (размер зерен-субзерен)	Pmax, ГПа	Ufs max, м/с	UHEL, м/с	ΔUfs, м/c	σ _{неL} , ГПа	Υ, ΓΠα	σ _{SP} , ГПа	hsp, мм
1	Исх. состояние, закалка 1000°C, КК (200-400 мкм)	6.98	373	10	167	0.22	0.11	3.22	0.30
2	ДКУП, n=1, МК (1-5 мкм)	6.18	333	20	157	0.41	0.18	2.90	0.35
3	ДКУП, n=3, СМК (0.2-0.4 мкм)	6.20	334	20	122	0.42	0.20	2.31	0.34


Ртах – тах тах давление ударного сжатия; Ufs тах – тах скорость свободной поверхности; UHEL – скорость поверхности на фронте упругого предвестника; ΔU fs – величина спада скорости от тах до первого тах до пер



Влияние легирования Cr и Zr на волновые профили образцов меди

1-КК структура, 100 мкм (отжиг 450 °C)
2- СМК структура, 0.2-0.5 мкм (ДКУП, n=1)
3-СМК+НК, 50-350 нм (ДКУП, n=4)

1-КК структура, 200-300 мкм (закалка от 1000°С) 2-МК, 1-5 мкм (ДКУП, n=1) 3-СМК структура, 0.2- 0.4 мкм (ДКУП, n=3)

Показано, что ДКУП, n=1 меди, приводящее к измельчению зерна от 100 до 0.5 мкм, в 5.7 раз увеличивает динамический предел упругости (σнец) и динамический предел текучести (Y) меди. Формирование СМК+НК структуры (50-350 нм) при ДКУП, n=4, увеличивает динамическую (откольную) прочность меди в 1.4 раза, по сравнению с исходным КК состоянием В сплавах Сu-0.03%Zr и Cu-0.1%Cr ДКУП, n=1 увеличивает σнеци Y в1.9-2.8 раза, соответственно. Измельчение зерна до СМК

в сплавах Сu-0.03%2г и Cu-0.1%Cr дкуп, n=1 увеличивает онец и Y в 1.9-2.8 раза, соответственно. измельчение зерна до Смк состояния (до 0.2-0.4 мкм) при ДКУП, n=3 увеличивает динамические свойства сплава Cu-0,1%Cr в 1.5-3.7 раз по сравнению с исходным КК состоянием.

Влияние легирования Zr и Cr на динамические свойства меди

Cu-0.03%Zr

№ п/п	Режим обработки и структура (размер зерен-субзерен)	Pmax, ГПа	Ufs max, м/с	UHEL, M/C	ΔUfs, м/c	σ _{HEL} , ΓΠα	Y, ГПа	σ _{SP} , ΓΠα	hsp, MM
1	Исх. состояние, закалка 1000°C, КК (200-400 мкм)	6.98	373	10	167	0.22	0.11	3.22	0.30
2	ДКУП, n=1, МК (1-5 мкм)	6.18	333	20	157	0.41	0.18	2.90	0.35
3	ДКУП, n=3, СМК (0.2-0.4 мкм)	6.20	334	20	122	0.42	0.20	2.31	0.34

Cu-0.1%Cr

№ п/п	Режим обработки и структура (размер зерен-субзерен)	Pmax, ГПа	Ufs max, м/с	UHEL, M/C	ΔUfs, м/c	σ _{HEL} , ΓΠα	Υ, ΓΠα	σ _{SP} , ΓΠα	hsp, мм
1	Исх. состояние, закалка 1000°C, КК (200-400 мкм)	5.73	310	8.7	90	0.19	0.12	1.90	0.37
2	ДКУП, n=1, МК (1-5 мкм)	6.52	350	26.4	129	0.54	0.21	2.40	0.33
3	ДКУП, n=3, СМК (0.2-0.4 мкм)	6.20	334	33.5	146	0.70	0.31	2.76	0.34

 $Pmax - max max давление ударного сжатия; Ufs max - max скорость свободной поверхности; UHEL - скорость поверхности на фронте упругого предвестника; <math>\Delta Ufs$ - величина спада скорости от max до первого min в момент откола; σ_{EL} - динамический предел упругости; Y - динамический предел текучести σ_{SP} - динамическая (откольная) прочность; h_{SP} - толщина откольной пластины

Выводы

- Легирование меди микродобавками (0.03-0.08 мас.%) Zr повышает температурный интервал рекристаллизации меди от 150-220°С до 500-600°С, что обусловлено выделением наночастиц (≤ 5нм) Cu₅Zr на дислокациях и субграницах, способствующих их закреплению и уменьшению подвижности.
- 2. Показано, что за счет комбинированной обработки: ДКУП + отжиг 400°С. в сплаве Cu-0.14Cr-0.04Zr формируется СМК структура с высокой твердостью МПа), электропроводностью (80% (1880)IACS), повышенными характеристиками прочности (оо,2=464МПа; ов=536МПа) при сохранении удовлетворительной пластичности. В Повышенный по сравнению медью СВОЙСТВ с дополнительным vровень механических сплавов связан упрочнением, обусловленным выделением наноразмерных (5-10нм) частиц Cu₅Zr и Cr в процессе ДКУП и старения.
- 3. Показано, что экономно-легированные сплавы Cu-Cr-Zr обладают высокой способностью к упрочнению методами ДКУП и ИПД трением скольжения. На Cu-0.09Cr-0.08Zr определено, что интенсивность сплава изнашивания образцов с СМК структурой, полученной при ДКУП, понижается КК состоянием. сравнению с раза Установлено, что комбинированная обработка по схеме ДКУП + отжиг при 400°С + ИПД трением приводит к формированию в материале поверхностного слоя НК структуры трения с размером кристаллитов 15-30 нм, что обеспечивает уровень микротвердости (3350 МПа) И низкое коэффициента трения (0.35).

- 4. Изучено влияние дисперсности неравновесной дефектной СМК+НК структуры меди и СМК структуры сплавов Cu-0.03%Zr и Cu-0.1%Cr, полученных методом ДКУП, на динамические свойства при испытаниях на ударное сжатие интенсивностью 5.6-6.9 ГПа и скоростью деформации (0,9-2,0)⋅10⁵ с⁻¹.
- 5. Показано, что ДКУП, n=1, приводящее к измельчению кристаллитов от 100 до 0.5 мкм, в 6 раз увеличивает динамический предел упругости и динамический предел текучести меди, по сравнению исходным КК состоянием. Формирование СМК+НК структуры с размером кристаллитов 50-350 нм при ДКУП, n=4, увеличивает динамическую (откольную) прочность меди в 1.4 раза, по сравнению исходным КК состоянием.
- 6. Определено, что ДКУП, n=1 сплавов Cu-0,03%Zr и Cu-0,1%Cr увеличивает динамический предел упругости и динамический предел текучести в 1.9-2.8 раза, соответственно. ДКУП, n=3 сплава Cu-0,1%Cr, приводящее измельчению кристаллитов до 0.2-0.4 мкм увеличивает динамические свойства сплава в 1.5-3.7 раза, по сравнению исходным КК состоянием, что обусловлено выделением наноразмерных частиц Cr в процессе ДКУП.
- 7. Отметим, что динамическая (откольная) прочность СМК+НК меди и сплава Cu-0.1%Cr с СМК структурой, полученной при ДКУП, составляет 2510 и 2760 МПа, что более, чем в 5 раз превышает предельное сопротивление до разрушения σВ данных материалов с аналогичными структурами.

Институт физики металлов им. М.Н. Михеева УрО РАН, г. Екатеринбург

Спасибо за внимание!

Выводы

- Изучено влияние высокоскоростной деформации методом ДКУП и старения на эволюцию структуры и свойств экономно-легированных дисперсионно-твердеющих сплавов на основе системы Cu-Cr-Zr,Cu-Zr и Cu-Cr. Показано, что легирование меди микродобавками хрома (0.09-0.22 мас. %) и циркония(0.03-0.08 мас. %) приводит к смене механизма формирования СМК структуры и релаксации упругой энергии при ДКУП: циклический характер структурообразования, обусловленный чередованием высокоскоростных процессов фрагментации и динамической рекристаллизации, сменяется процессами фрагментации и частичного деформационного старения с выделением наноразмерных частиц вторых фаз.
- Установлен температурно-временной режим отжига (старения) сплавов Cu-Cr-Zr с CMK структурой, полученной методом ДКУП, для повышения механических свойств и электропроводности. В частности, для CMK сплава Cu-0.14Cr-0.04Zr, показано, что оптимальное сочетание микротвердости (HV=1880 МПа), электропроводности (80%IACS), прочности (σ0.2=464 МПа, σв =542 МПа) и пластичности (δ=11 %), было получено при обработке, включающей ДКУП и отжиг при 400°C, 1 ч. Повышенный по сравнению медью уровень механических свойств сплавов связан с дополнительным упрочнением, обусловленным выделением наноразмерных (5-10нм) частиц Cu5Zr и Cr в процессе ДКУП и старения.
- Показано, что экономно-легированные сплавы Cu-Cr-Zr обладают высокой способностью к упрочнению методами ДКУП и ИПД трением скольжения. На примере сплава Cu-0.09Cr-0.08Zr определено, что интенсивность изнашивания образцов с СМК структурой, полученной при ДКУП, понижается в 1.4 раза по сравнению с КК состоянием. Установлено, что комбинированная обработка по схеме ДКУП + отжиг при 400°С + ИПД трением приводит к формированию в материале поверхностного слоя НК структуры трения с размером кристаллитов 15–30 нм, что обеспечивает высокий уровень микротвердости (3350 МПа) и низкое значение коэффициента трения (0.35).