ИССЛЕДОВАНИЕ ВЫСОКОСКОРОСТНОЙ ДЕФОРМАЦИИ НЕРЖАВЕЮШЕЙ СТАЛИ, ИЗГОТОВЛЕННОЙ С ПОМОЩЬЮ АДДИТИВНЫХ ТЕХНОЛОГИЙ (3D ПРИНТЕР), МЕТОДОМ СОСТАВНЫХ СТЕРЖНЕЙ ГОПКИНСОНА

А.Ю. Гармашев, С.М. Долгих, Е.Б. Смирнов, <u>Е.А. Петухов,</u> А.И. Клёнов, К.С. Сидоров, М.А. Шистириков, Д.Т. Юсупов, З.И. Завьялов, А.А. Борцов

В настоящей работе приведены результаты исследований динамических свойств конструкционного материала – нержавеющей стали, полученной по аддитивной технологии, методом 3D-печати. Исследования проведены с помощью установки метода составных стержней Гопкинсона. Этот метод позволяет проводить испытания широкого круга материалов, исследовать динамические диаграммы сжатия и растяжения в диапазоне скоростей деформации $\dot{\varepsilon} = 10^2 \cdot 10^3 \text{ c}^{-1}$.

Образцы из нержавеющей стали (аналог 12Х18Н10Т) были изготовлены методом лазерного спекания металлического порошка (Selective Laser Sintering) на промышленном 3-D принтере.

В ходе исследований проведено 12 экспериментов с образцами из нержавеющей стали. Диапазон скоростей ударника от 7 до 14 м/с, при этом собственные скорости деформации образцов – от 0,75×10³ до 2,8×10³ 1/с. В работе приведены диаграммы напряжениедеформация и скорость деформации-деформация.

Цель работы: исследование свойств образцов, изготовленных по методу аддитивных технологий.

Задачи: проведение серии экспериментов с помощью установки метода составных стержней Гопкинсона.

Исследование физических и механических свойств материалов, подвергаемых воздействию интенсивных динамических нагрузок и высокоскоростной деформации,

представляет собой большой научный и практический интерес в связи с развитием ряда областей новой техники, а также в связи с разработкой и внедрением в промышленность новых перспективных технологических приемов обработки материалов.

В настоящее время одним из наиболее динамично развивающихся направлений «цифрового» производства являются аддитивные технологии. Аддитивные технологии (часто именуемые 3D-технологиями) обобщенное название технологий, предполагают изготовление (построение) физического объекта (детали) методом послойного нанесения (добавления, англ. – «add») материала по данным цифровой модели (или CAD-модели), в отличие от традиционных методов формирования детали за счет удаления материала из массива заготовки [1].

В практике динамических испытаний механических свойств конструкционных материалов наибольшее распространение получили такие методы и установки, как кулачковые пластометры, копровые испытания, метод динамической осадки, раздача кольца с помощью электромагнитного поля или взрыва. Значительный прогресс в области динамических испытаний был достигнут в последние десятилетия благодаря методу Кольского с использованием составного стержня Гопкинсона.

Эта методика позволяет проводить испытания широкого круга материалов, исследовать динамические диаграммы сжатия и растяжения в диапазоне скоростей деформации $\dot{\varepsilon} = 10^2 \cdot 10^4$ с⁻¹ [2].

Система для исследований состоит из двух длинных мерных стержней (нагружающего и опорного) с достаточно высоким пределом текучести и тонкого образца в виде таблетки, расположенного между их торцами. В нагружающем стержне возбуждается упругий импульс сжатия определенной амплитуды и длительности. При подходе к образцу этот импульс, ввиду разности акустических жесткостей материалов стержня и образца, разделяется: часть импульса отражается от границы обратно в нагружающий стержень, а другая часть проходит через образец в опорный стержень. Деформации стрежней измеряются тензодатчиками, наклеенными на нагружающий и опорный мерные стержни.

Схема установки приведена на рисунке 1.

При выводе основных соотношений метода ССГ предполагается, что ввиду очень малой длины образца по сравнению с длиной нагружающего импульса в образце в течение испытания реализуется одноосное напряженное состояние с равномерным распределением напряжений и деформаций по его длине. Таким образом, несмотря на высокие скорости деформации образца (до $\sim 10^4$ c⁻¹), испытание может рассматриваться как квазистатическое.

Параметрические зависимости $\sigma(t)$, $\varepsilon(t) \dot{\varepsilon}(t)$ в образце определяются на основе экспериментальных записей упругой деформации в нагружающей $\varepsilon_I(t)$ и проходящей $\varepsilon_T(t)$ волнах напряжения (соответственно, в нагружающем и опорном стержнях) по следующим формулам [3]:

$$\sigma(t) = \frac{ES}{S_s^0} [\varepsilon_T(t)]; \tag{1}$$

$$\varepsilon(t) = \frac{2C}{L_0} \int_0^t \left[\varepsilon_I(t) - \varepsilon_T(t) \right] \cdot dt;$$
(2)

$$\dot{\varepsilon}(t) = \frac{2C}{L_0} \Big(\varepsilon_I(t) - \varepsilon_T(t) \Big), \tag{3}$$

где S_s^0 – исходная площадь поперечного сечения образца, *S* – площадь поперечного сечения мерных стержней, *E* – модуль упругости материала мерных стержней, *C* – скорость продольных волн в стержнях, *L*₀ – первоначальная длина образца.

Из полученных параметрических зависимостей исключается время и строится диаграмма деформирования σ - ε конкретного образца и зависимости скорости деформации от деформации $\dot{\varepsilon} \sim \varepsilon$.

С помощью установки можно исследовать диаграммы сжатия, растяжения, локализованный сдвиг, трещиностойкость, эффект Баушингера и другие характеристики материалов при скоростях деформации $\dot{\varepsilon} \sim 10^2 \cdot 10^4$ с⁻¹. Смена вида испытаний в установках стержней Гопкинсона достигается достаточно просто. Для этого требуется применить другие типы образцов и стержни с измененной геометрией в месте крепления образца. Нагружение и способ регистрации упругих деформаций стержней остаются такими же.

Измерение упругих импульсов деформаций в мерных стержнях проводится с помощью наклеенных на их боковые поверхности тензорезисторов. Регистрируются нагружающий $\varepsilon^{i}(t)$,

отраженный є^г(t) и прошедший є^t(t) через образец импульсы деформации, являющиеся "откликами" материала на приложенную нагрузку. Тензорезисторы (см. рисунок 1) наклеиваются на образующую поверхность на расстоянии 4-5 диаметров от торца нагружения (нагружающий стержень) или от торца касания с образцом (нагружающий и опорный стержень).

Для питания тензорезисторов выбрана потенциометрическая схема ввиду её простоты и возможности питания нескольких измерительных каналов от одного источника. Обе группы (тензорезисторов на опорном и нагружающем стержнях) питаются постоянным током от стандартного стабилизированного блока питания через оригинальные схемы питания и калибровки. Сигналы с датчиков регистрируются запоминающим осциллографом.

Аддитивные технологии (от английского Additive Fabrication) – обобщенное название технологий, предполагающих изготовление изделия по данным цифровой модели (или CAD-модели) методом послойного добавления материала.

В отличие от технологии механической обработки, работающей по принципу "вычитания", т.е. поэтапного удаления материала с заготовки до получения необходимых формы и размера, получение изделия происходит послойно, шаг за шагом путем формирования (тем или иным способом) слоя материала, отверждения или фиксации этого слоя в соответствии с конфигурацией сечения САD-модели и соединения каждого последующего слоя с предыдущим.

Образцы из стали 12Х18Н10Т были изготовлены методом лазерного спекания металлического порошка (Selective Laser Sintering (SLS)) на базе СФТИ НИЯУ «МИФИ» на промышленном 3-D принтере.

Рисунок 2 – Образцы из стали изготовленные на 3D принтере.

В таблице 1 приведены результаты определения химического состава материала образцов

Таблица 1 – Химический состав образцов.

Образец	Массовая доля элемента, %				
oopused	Cr	Ni	Ti	Mn	Si
Образец 1	17,2	10,5	0,55	0,61	0,63
Образец 2	17,4	10,0	0,56	0,58	0,66
Образец 3	17,3	10,7	0,56	0,60	0,72
12X18H10T	17,0-	11,0-	5 x C-	<2.00	<0.80
ГОСТ 5632-72	19,0	13,0	0,80	<u> </u>	_0,00

По содержанию основных легирующих элементов материал исследуемых образцов условно можно отнести к нержавеющей стали типа X18H10T по ГОСТ5632-72.

Рисунок 3 - Структура материала АТ-нержавеющей стали, оптические снимки.

Рисунок 4 – Структура материала традиционно изготовленной нержавеющей стали, оптические снимки.

На рисунке 3 наблюдается упорядоченная структура, обусловленная, по-видимому, движением лазера, без чётко выраженных границ зёрен, что может свидетельствовать о процессе быстрой кристаллизации. По этой же причине зерно имеет меньшие размеры, чем в 12X18H10T, также видны поры большего размера (на рисунке 4).

В ходе исследований проведена серия экспериментов с образцами АТ из нержавеющей стали Ø8х4 мм. Скорость ударника составила 7,24-13,88 м/с, собственные скорости деформации образцов варьируются в пределах: 0,75×10³ до 2,8×10³ 1/с.

На рисунках 5, 6 приведены семейства диаграмм динамического нагружения образцов, полученные при различных скоростях ударника. На диаграммах сплошными линиями обозначены зависимости «напряжение-деформация», а пунктирными линиями – «скорость деформации-деформация». Цифрами на диаграммах показаны номера образцов.

Рисунок 6 – Семейство диаграмм «о - є» второй серии опытов.

Таблица 2 – Деформация и размеры образцов первого комплекта.

N⁰	Скорость	Толщина,	Диаметр,	Деформация,
образца	ударника, м/с	MM	MM	%
1	13,88	2,99	7,91	15,70

2	8,47	2,99	7,91	7,40
3	9,25	2,98	7,92	6,70
4	10,86	2,98	7,91	10,40
5	9,09	2,97	7,90	6,40
6	8,06	2,98	7,91	5,00

Таблица 3 – Деформация и размеры образцов второго комплекта.

No	Скорость	Толщина,	Диаметр,	Деформация, %
образца	ударника, м/с	ММ	MM	
1	11,90	2,91	7,92	12,70
2	10,63	2,91	7,90	10,00
3	10,41	2,91	7,90	9,60
4	9,25	2,91	7,90	6,90
5	10,86	2,92	7,91	10,30
6	8,33	2,92	7,90	5,10

Диаграммы зависимостей «σ - є» не являются монотонно возрастающими. Такой вид диаграмм «σ - є» является типичным для динамических диаграмм, полученных по методу Кольского.

Из рисунков 5, 6 видно, что при разных скоростях деформации диаграммы σ - ε мало отличаются друг от друга, обладая приблизительно одинаковым деформационным упрочнением. Показатели предела текучести, (таблица 4) $\sigma_{0,2}$ и предела прочности $\sigma_{\rm B}$ для образцов из АТ стали ~ в 2 раза выше, чем для стали, изготовленной традиционным способом (по марочнику сталей [4]).

Гаолица 4 – показатели предела текучести $O_{0,2}$ и предела прочности O_{B} .				
Сталь	σ _{0,2} , ΜΠα	σ _в , МПа		
12Х18Н10Т ГОСТ	282,43	561,14		
АТ нержавеющая сталь	552,15	938,6		

Таблица 4 – Показатели предела текучести $\sigma_{0,2}$ и предела прочности σ_{E}

В ходе исследований проведено 12 экспериментов с образцами из нержавеющей стали. Диапазон скоростей ударника от 7 до 14 м/с, при этом собственные скорости деформации образцов – от 0,75×10³ до 2,8×10³ 1/с. В работе приведены диаграммы напряжениедеформация и скорость деформации-деформация.

Проведен сравнительный анализ результатов исследования образцов, изготовленных с помощью аддитивных технологий, с табличными данными стали, изготовленной традиционным способом.

Список литературы

1. Валетов В.А. Аддитивные технологии (состояние и перспективы). Учебное пособие – СПб., Университет ИТМО, 2015. – 63 с.

2. Кольский Г. Исследование механических свойств материалов при больших скоростях нагружения. Механика, 1950, выпуск 4, с. 108-128.

3. Зукас Дж.А., Николас Т., Свифт Х.Ф. и др. Динамика удара. М.: Мир, 1985, с. 296.

4. Марочник сталей и сплавов / М.М. Колосков, Е.Т. Долбенко, Ю.В. Каширский и др., Под общей ред. А.С. Зубченко – М., Машиностроение, 2001. – 672 с.