РЕГИСТРАЦИЯ ПАРАМЕТРОВ СХОЖДЕНИЯ ЦИЛИНДРИЧЕСКИХ И СФЕРИЧЕСКИХ ОБОЛОЧЕК МЕТОДОМ МНОГОКАНАЛЬНОГО ГЕТЕРОДИН-ИНТЕРФЕРОМЕТРА

Д.А. Калашников, А.В. Федоров, С.А. Финюшин, Е.А. Чудаков, И.В. Шмелев, И.С. Гнутов, Л.К. Антонюк, А.О. Яговкин, М.В. Жерноклетов, А.В. Дергунов, М. П. Калинин, М.Ю. Батьков

РФЯЦ-ВНИИЭФ, Саров, Россия

Методика лазерного гетеродин-интерферометра (PDV) [1]-[3] по эксплуатации удобнее своих предшественников Фабри-Перо и VISAR, не уступает им в точности и превосходит по простоте обработки получаемых результатов. Ещё одним неоспоримым преимуществом гетеродин-интерферометра является его универсальность, применимость в экспериментах широкого спектра направленности.

Введение

Отдельным направлением газодинамических исследований является регистрация процессов, реализующихся при схождении оболочек. Непрерывность и высокая точность получаемых данных выделяют лазерный гетеродин-интерферометр среди других методик, использующихся в указанной области. Многоканальность измерений позволяет контролировать работу нагружающего устройства а также выявлять особенности протекания процесса в зависимости от точки зондирования (включения, неоднородности).

В докладе описаны адаптационные подходы, разработанные с целью использования гетеродинных измерений в условиях сложной конфигурации тестируемых образцов – при исследовании схождения оболочек с цилиндрической и сферической геометрией.

Регистрация схождения стальной цилиндрической оболочки

В цилиндрическом устройстве с двухкаскадной схемой расположения оболочек, исследовалось схождение стальной оболочки второго каскада (рисунок 1а). Оболочка второго каскада обжималась оболочкой первого каскада через промежуточный газовый слой из аргона с начальным давлением 40 атм. Нагружение осуществлялось продуктами взрыва цилиндрического заряда ВВ по поверхности с помощью многоточечной системы инициирования. Целью измерений была регистрация динамики схождения оболочки, контроль однородности сжатия а также наличия пыления с внутренней поверхности оболочки второго каскада при схождении к центру.

В эксперименте использовалось пять измерительных каналов PDV. Датчики (коллиматоры) устанавливались в приёмнике на радиусе 9 мм от оси устройства. База измерения составляла 51 мм. Общий вид измерительного приёмника представлен на

1

рисунке 16. Он проектировался на основе медных редирекционных зеркал с целью минимизации его размеров и увеличения базы регистрации.

а) Исследуемое устройство

Рисунок 1 – Исследуемое устройство и измерительный приёмник

Характерная спектрограмма, а также профили скорости, зарегистрированные в опыте с помощью датчиков PDV, представлены на рисунке 2.

а) Характерная спектрограмма

Рисунок 2 – Экспериментальные данные

На начальном участке записей (рисунок 2, t=34..36 мкс) регистрируется низкоскоростной ступенчатый разгон, обусловленный рециркуляцией ударных волн в аргоне между оболочками первого и второго каскада устройства. За низкоскоростной частью следует скачок скорости до W≈3,0 км/с, соответствующий выходу ударной волны на исследуемую поверхность. Затем по ряду каналов видны откольные импульсы – средняя величина откольной прочности составила $\sigma_{\text{отк}}=2,52$ ГПа. Далее на экспериментальных профилях следует плавный набор скорости в течение ~12 мкс, после чего начинается стадия кумулятивного схождения. Отсутствие откольного импульса, несколько заниженная скорость на квазистационарном участке и отсутствие быстрого набора скорости на кумулятивной фазе схождения на профиле канала №5 в сравнении с остальными каналами, а также другие отличия в конфигурации профилей, полученных по разным каналам, могут свидетельствовать о разнодинамичности нагружения и подтверждают преимущества использования многоканальной системы регистрации.

Пыление поверхности оболочки зарегистрировано лишь по двум из пяти датчиков. Отсутствие данного эффекта на остальных каналах, по всей видимости, говорит о неравномерном характере выброса частиц. Это может быть обусловлено как влиянием нагружающей системы на развитие неустойчивостей на свободной поверхности материала (вследствие асимметричности), так и локальными особенностями поверхности (неоднородности, включения) в точках зондирования.

Регистрация схождения медной цилиндрической оболочки

В эксперименте по исследованию особенностей процессов разрушения медного цилиндра использовался метод соударения (рисунок 3). Разгон цилиндрического ударника до требуемой скорости осуществлялся с помощью устройства, в котором за счет энергии взрыва тонкого слоя ВВ, инициируемого в режиме скользящей детонации, ускорялся тонкий (Δ=0,5 мм) конический медный лайнер [4]. Угол раствора конической оболочки, её толщина, а также толщина ВВ подбирались так, чтобы обеспечить приемлемую степень синхронности подлёта лайнера к двухслойному цилиндрическому демпферу («трансформатору импульса»), внутри которого располагался медный цилиндрический ударник.

1 – измерительный приёмник; 2 – ВВ; 3 – ударник; 4 – образец

Рисунок 3 – Схема исследуемого устройства

Для регистрации с помощью метода PDV был разработан составной измерительный приемник. Конструкция базируется на оптических коллиматорах в количестве шести штук и редирекционных отражателях лазерного излучения. Как показано на рисунке 4, подобный приёмник позволяет регистрировать скорость схождения цилиндрического образца в области 360°, через каждые 60°.

1 – волокна коллиматоров; 2 – инфракрасное излучение; 3 – отражатели лазерного излучения Рисунок 4 – Измерительный приёмник

Характерная спектрограмма, полученная в опыте, а также профили скорости внутренней поверхности цилиндрического образца приведены на рисунке 5. На экспериментальных зависимостях наблюдается выход ударной волны на исследуемую поверхность и последующее схождение медной оболочки со скоростями на уровне 120-180 м/с. Практически по всем каналам регистрируются откольные импульсы, средняя величина откольной прочности составила $\sigma_{\text{отк}}=0,56$ ГПа.

Как видно, амплитудно-временные характеристики профилей скорости как и времена выхода ударной волны на внутреннюю поверхность оболочки существенно различаются в зависимости от канала измерения (от точки зондирования). Таким образом, на основе многоканальных измерений можно говорить, что в эксперименте не удалось достичь симметричности нагружения цилиндрического образца.

а) Характерная спектрограмма

б) Экспериментальные профили

Рисунок 5 – Экспериментальные данные

Максимальная разновременность начала движения внутренней поверхности оболочки на зондируемом участке по высоте мишени составила ~4,4 мкс. Наиболее ранний момент выхода ударной волны регистрирует датчик №6, располагавшийся на минимальном расстоянии от нижнего торца цилиндра (со стороны инициирования детонации). Самый поздний момент начала движения внутренней поверхности оболочки зарегистрирован в точке зондирования датчика №1, находящейся на максимальном расстоянии от нижнего Татчика №1, находящейся на максимальном

ударной волны между датчиками №1 и №6 указывает на наличие осевой составляющей в скорости движения толстостенного ударника и, соответственно, лайнера. Таким образом, совокупность экспериментальных зависимостей, полученных с помощью многоканальных измерений PDV, позволяет проследить динамику течений, реализующихся в мишени как в радиальном, так и в осевом направлениях.

Исследование хрупкого разрушения сферической оболочки

На чугунном образце проводилось исследование особенностей разрушения сферической оболочки при её схождении. Толщина оболочки составляла 4 мм. Радиус внутренней границы исследуемой оболочки составлял R=16,5 мм, внутренний радиус измерительного приёмника – R=15 мм, таким образом, база регистрации достигала 31,5 мм. Нагружение осуществлялось слоем пластического BB толщиной 10 мм с инициированием в одной точке – в полюсе оболочки. Регистрация осуществлялась с помощью 13 датчиков PDV, размещённых в полусферическом приёмнике по двум меридианам, на углах: 30° , 50° , 70° и 90° (рисунок 6).

а) Исследуемое устройство

б) Измерительный приёмник

ф

 ϕ

Φ

Рисунок 6 – Схема исследуемого устройства

Характерные спектрограммы, зарегистрированные в опыте, представлены на рисунке 7.

Рисунок 7 – Характерные спектрограммы

Следует отметить, что большое количество измерительных каналов позволило зарегистрировать по ряду из них характерную особенность. Так, на спектрограммах датчиков №3 и №4 (рисунок 7) наблюдается "перескок" скорости – регистрация на некотором временном промежутке (0,4-2 мкс) двух профилей скорости одновременно. Указанный эффект, может обуславливаться реологическими свойствами исследуемого материала и свидетельствовать о его хрупком разрушении. Обжатие скользящей волной приводит к возрастанию бокового давления и интенсивному росту сдвиговых напряжений в материале. По достижении определенных критических давлений пластическая деформация чугуна прекращается и реализуется хрупкое разрушение оболочки на отдельные фрагменты. Далее исследуемая поверхность движется в виде фрагментов с выраженной скоростной дисперсией, что и регистрирует методика гетеродининтерферометра. При этом "перескоки" характерны не для всех спектрограмм. По всей видимости на исследуемой стадии явление носит локальный характер и регистрируется лишь благодаря постановке с большим количеством точек зондирования.

Вся совокупность полученных профилей скорости показана на рисунке 8.

Рисунок 8 – Экспериментальные профили

Как видно, в эксперименте по 13 каналам зарегистрирована динамика разгона чугунной оболочки со скоростями W=0,44-0,78 км/с после выхода ударной волны на исследуемую поверхность и максимальными значениями W=1,1-1,2 км/с в конце записи. По амплитуде и времени выхода наблюдается распределение зависимостей на три группы (показаны разными цветами). Таким образом, прослеживается удалённость точек зондирования от инициирующего элемента: наиболее близко к нему располагались точки зондирования датчиков, выделенных на рисунке черным и красным цветами, на наибольшем расстоянии – датчики, отмеченные зелёным. Соответственно, при удалении от точки зондирования увеличивается время выхода и уменьшается амплитуда.

Многоканальная регистрация схождения стальной сферической оболочки

В эксперименте по исследованию процесса схождения стальной сферической оболочки регистрация с помощью метода PDV осуществлялась по 112 измерительным каналам. Использовались оптические датчики двух видов: коллиматоры (56 шт.) и малогабаритные волоконные датчики (56 шт.) [5]. Схема расположения датчиков и общий вид измерительного приёмника представлены на рисунке 9.

а) Расположение датчиков

б) Измерительный приёмник

Рисунок 9 – Схема расположения датчиков и общий вид измерительного приёмника

Инициирование в эксперименте осуществлялось в одной точке через слой пластического ВВ. Стальная оболочка нагружалась с помощью заряда пластифицированного октогена через алюминиевый демпфер. Послойная схема исследуемого устройства приведена на рисунке 10.

Рисунок 10 – Послойная схема исследуемого устройства

Характерная спектрограмма, полученная в опыте, а также профили скорости стальной оболочки представлены на рисунке 11. В эксперименте зарегистрирован ступенчатый разгон внутренней границы стальной оболочки. Скорость нарастает по мере развития процесса от W ~ 1,55 км/с (при выходе ударной волны на ВГО) до максимальных значений W ~ 2,7 км/с (на подлёте к базе измерения R = 29 мм). Длительность записей составила в среднем 14 мкс.

Рисунок 11 – Экспериментальные данные

Как видно, массивы информации, получаемые с помощью ста и более измерительных каналов гетеродин-интерферометра, выводит газодинамические измерения на новый уровень. С их использованием можно приблизиться к реконструкции пространственной картины развития исследуемого процесса. Так, R(θ) диаграмма (рисунок 12), построенная по данным описываемого опыта, отображает изменение радиуса исследуемой оболочки в зависимости от величины угла θ . Цветами показаны моменты времени, маркерами обозначены непосредственно экспериментальные точки, а сплошными линиями – их интерполяция кубическими сплайнами. Таким образом, на R(θ) диаграмме фактически отображен реальный вид исследуемой оболочки для девяти моментов времени и шести углов ϕ .

Рисунок 12 – R-0 диаграммы движения оболочки в полярной системе координат

Как следует из $R(\theta)$ диаграммы, угловая область регистрации в данном опыте составила $\pm 70^{\circ}$. Для каждого момента времени кривые, соответствующие разным углам ϕ , отличаются незначительно. Достаточно симметрично относительно центра развивается процесс и по координате θ . Что касается смещения оболочки, то область инициирования

заметно и ожидаемо опережает периферийные зоны, образуя по мере приближения к приёмнику отчётливую двояковыпуклую форму.

Заключение

докладе представлены результаты экспериментов по многоканальной B регистрации скорости схождения цилиндрических и сферических оболочек с помощью метода гетеродин-интерферометра. Описана конструкция разработанных измерительных приёмников, позволяющих проводить измерения с помощью коллиматоров PDV в экспериментальных сборках с цилиндрической и сферической геометрией. Для стальных и медных цилиндрических образцов получены профили скорости их схождения, рассчитаны параметры откольного импульса, благодаря многоканальности выявлены особенности работы устройств, связанные, с разнодинамичностью нагружения. В постановке с большим количеством точек зондирования зарегистрировано разрушение деформациях. сферической чугунной оболочки на сдвиговых Показано, что использование ста и более каналов PDV при исследовании сферического схождения оболочки открывает возможности реконструирования пространственной картины её движения.

Список использованных источников

1 O.T. Strand, D.R. Goosman, C. Martinez, and T.L. Whitworth, «Compact system for high-speed Velocimetry using heterodyne techniques», «Rev. Sci. Instrum.», 77. 2006.

2 «Невозмущающие методы диагностики быстропротекающих процессов» / Под ред. доктора техн. наук А.Л. Михайлова. – Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2015. – 322 с.

3 А.В. Федоров, А.Л. Михайлов, С.А. Финюшин, Д.А. Калашников, Е.А. Чудаков, Е.И. Бутусов, И.С. Гнутов. Регистрация параметров множественного откола и внутренней структуры облака частиц при ударно-волновом нагружении металлов. ЖЭТФ 149, 33, (2016).

4 М.Ю. Батьков, О.А. Тюпанова, М.И. Шмакова, Е.А. Чудаков, И.В. Шмелёв, Л.К. Антонюк, А.Н. Баландина, М.И. Ткаченко. Особенности откольного разрушения в меди при квазиосесимметричном схождении. Сборник докладов XVII Харитоновских чтений. Саров. 2015.

5 P. Mercier, J. Benier, A. Azzolina, J. Lagrange and D. Partouche, "Photonic Doppler Velocimetry in shock physics experiments", 8th International conference on mechanical and physical behavior of materials under dynamic loading (DYMAT), France, 2006.

9

Авторская учетная карточка

1. Фамилия, имя, отчество Шмелев Илья Владимирович

2. Дата рождения _____ 27.04.1987

3. Место работы 0340-08-03

Авторская учетная карточка

- 1. Фамилия, имя, отчество <u>Фёдоров Алексей Викторович</u>
- 2. Дата рождения _____ 28.03.1954 _____
- 3. Место работы 0340-08-03
- 4. Кандидат технических наук

Авторская учетная карточка	
1. Фамилия, имя, отчество	Финюшин Станислав Александрович
2. Дата рождения	07.11.1974
3. Место работы	0340-08

Авторская учетная карточка	
1. Фамилия, имя, отчество	Чудаков Евгений Алексеевич
2. Дата рождения	21.11.1988
3. Место работы	0340-08-03

Авторская учетная карточка	
1. Фамилия, имя, отчество	Калашников Денис Александрович
2. Дата рождения	25.02.1985
3. Место работы	0340-08-03

Авторская учетная карточка		
1. Фамилия, имя, отчество	Гнутов Иван Сергеевич	
2. Дата рождения	09.09.1985	
3. Место работы	0340-08-03	

Авторская учетная карточка	
1. Фамилия, имя, отчество	Антонюк Леонид Константинович
2. Дата рождения	13.02.1984
3. Место работы	0340-08-03

Авторская учетная карточка		
1. Фамилия, имя, отчество _	Яговкин Александр Олегович	
2. Дата рождения	18.12.1986	
3. Место работы	0340-08-03	

Авторская учетная карточка	
1. Фамилия, имя, отчество _	Жерноклетов Михаил Васильевич
2. Дата рождения	12.11.1945
3. Место работы	0330-04
4. Доктор физ. мат. наук	

Авторская учетная карточка	
1. Фамилия, имя, отчество	Дергунов Андрей Викторович
2. Дата рождения	01.12.1978
3. Место работы	0330-04

Авторская учетная карточка

1. Фамилия, имя, отчество Максим Павлович Калинин

2. Дата рождения _____ 28.01.1991

3. Место работы _____ 0340-11-01

Авторская учетная карточка	
1. Фамилия, имя, отчество	Батьков Михаил Юрьевич
2. Дата рождения	13.12.1979
3. Место работы	0330-10-02