

Неравноплечный интерферометр с линейным разрешением для исследования динамики пространственного распределения скорости в экспериментах физики экстремального состояния вещества на установке ЛУЧ

<u>К.Л. Губский¹, А.В. Михайлюк¹, В.Н. Деркач², А.П. Кузнецов¹, В.В. Алексеев²</u>

¹Национальный исследовательский ядерный университет «МИФИ» ²Федеральное государственное унитарное предприятие российский федеральный ядерный центр Всероссийский научноисследовательский институт экспериментальной физики

XIV Забабахинские научные чтения

Velocity interferometers

VISAR

Photonic Doppler Velocimeter

Velocity Interferometer System for Any Reflector

Виды неравноплечных интерферометров

Push-pull VISAR

Line imaging velocimeter

Интерферометр Майкельсона

- Скорости до 10 км/с
- Многоканальность
- Временное разрешение 1 нс

Интерферометр Маха-Цандера

- Скорости до 200 км/с
- Непрерывное пространственное разрешение
- Временное разрешение 10 пс

Принципиальная схема LIV

Laser Diagnostics

Laboratory

NRNU MEPHI

- Построение изображения мишени на щели фотохронографа
- Несколько промежуточных изображений
- Увеличение оптической системы x5-40
- Длина оптической схемы 1-20 м
- Использование излучения с высокой временной и низкой пространственной когерентностью
- Настройка интерферометра по белому свету

Алгоритм вычисления скорости

Variants of velocity True velocity = coincidence of interferometers according two interferometers K size of interferometer 2 K size of interferometer 1

(а) идеализированная запись полос (b) вычисленная динамика скорости

Два интерферометра с различными эталонами образуют нониусную систему. Это позволяет вычислять реальную скорость без использования дополнительных диагностик даже при потере контраста на фронте ударной волны.

Применение LIV

МБарные ударные волны в твердых и жидких веществах

Процессы в веществе при ударноволновом нагружении (фазовые переходы, металлизация прозрачных веществ и т.д.)

1000 80 100 Shocks in D₂ 3 60 Velocity (km/s) Power (TW) 2 Shock in CH 20 0.1 5 10 15 20 0 16 14 Time (ns) Time (ns)

Несколько ударных волн, создаваемых профилированным лазерным импульсом для достижения высоких давлений

Celliers P. M., Robey H. F., BoehlyT. R. Shock timing on the National Ignition Facility: First Experiments // 7th International Conference on Inertial Fusion Sciences and Applications Bordeaux, France September 12, 2011

Shock timing

18

Применение LIV

МБарные ударные волны в Shock timing твердых и жидких веществах 1000 80 Прозрачная мишень 100 Аблятор Shocks in D **Multiple views** Mirrors placed in the cone provide additional views of the capsule (a 2-mirror _____ variant has been fielded successfully and a 4-mirror design is in development) Силовой лазер Equator Pole 18 aperture aperture Уд Before N110823-008-999 Процессы в веш VISAR Mirror волновом нагру Au After 1 Mirror переходы, мета. shielding reflection 12 14 16 18 20 прозрачных вец (pole) Time (ns) 10 Time Insi Feedback for cone Tests drive symmetry fraction tuning

Joe Kilkenny NIF Diagnostics: now and in the future // Presentation to Workshop on Science of Fusion Ignition on NIF May 23, 2012

ИЛФ

LUCH Line imaging velocimeter

ZEMAX рассчеты

Оптическая схема

Блок-схема коммутации

Состав измерительного комплекса

В состав Комплекса входят:

- Оптический Стенд, который регистрирует параметры движения отражающей (светящейся) поверхности мишени;
- Источник лазерной подсветки с регулируемой мощностью. Источник лазерной подсветки имеет длину волны 660 нм;
- Удаленная система управления и обработки информации.

Комплекс разработан для интеграции в установку «Луч»

Внешний вид интерферометра

Параметры

Диапазон скоростей:	5 – 100 км/с
Точность:	1,5%
Размер объекта:	300-1000 мкм
Пространственное разрешение:	5 мкм

Измерение пространственного разрешения

Интерференционная картина по белому свету

1 MM

0.5 мм

Параметры системы		
Размер мишени, мм	0.3-0.6-1	
Увеличение	12 – 114	
Пространственное разрешение, мкм	3 – 58	

Тестовые изображения для 0.6 и 0.3 мм мишеней

Источник излучения

Схема зондирующей лазерной системы

Одночастотный режим работы импульсного Nd:YAG лазера в данной схеме достигается за счет инжекции одночастотного излучения в резонатор. Длина волны излучения лазера инжекции при этом подстраивается под одну из продольных мод импульсного лазера вблизи центра линии усиления.

Зондирующая лазерная система

Разработанная лазерная система выполнена по схеме MOPA (Master Oscillator Power Amplifier) и включает в себя импульсный Nd:YAG лазер на длине волны 1319 нм, работающий в режиме модуляции добротности, непрерывный полупроводниковый перестраиваемый лазер на той же длине волны, двухпроходный усилитель и преобразователь во вторую гармонику.

Лазер Solar LQ 660

Параметры лазера		
Длина волны, нм (2ω)	660	
Частота повторения, Гц	10	
Энергия, мДж	~30	
Длительность, нс	~50	

Система ввода излучения в оптоволоконный кабель

Характеристики лазера Cobolt Flamenco

Длина волны излучения, нм	660
Выходная мощность, мВт	100
Спектральная полоса излучения, МГц	<1
Стабильность длины волны, нм	± 0,02
Диаметр луча в апертуре, мкм	700
Отклонение (расходимость) луча (полный угол), мрад	< 1,5
Поляризация	> 100:1

Оптоволокно (диаметр жилы 1 мм, 30м)

До волокна

После волокна

Результаты тестовых экспериментов

Laser Diagnostics

LAB Laboratory

Заключение

- Создан лазерный интерферометрический комплекс для измерения скорости в диапазоне 5-100 км/с.
- Реализована схема одночастотной генерации Nd лазера при инжекции внешнего излучения и стабилизации длины резонатора по сигналу двухлучевой интерференции.
- Проведена серия тестовых экспериментов по ударно-волновому нагружению вещества лазерным импульсом.