ДИНАМИЧЕСКИЕ СВОЙСТВА МЕДИ И СПЛАВОВ МЕДИ С СУБМИКРОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ, ПОЛУЧЕННОЙ ВЫСОКОСКОРОСТНОЙ ДЕФОРМАЦИЕЙ

Д.Н. Абдуллина¹, И.В. Хомская¹, С.В. Разоренов², Е.В. Шорохов³, Г.В. Гаркушин²

¹Институт физики металлов имени М.Н. Михеева Уральского отделения РАН, Екатеринбург

²Институт проблем химической физики РАН, Черноголовка

³РФЯЦ–ВНИИТФ, имени академика Е.И. Забабахина, Снежинск

яц-вниито Схема динамического канально-углового прессования (ДКУП)

МАТЕРИАЛ: медь 99,8% (размер зерна 100 мкм); сплавы Cu-0,03%Zr и Cu-0,1%Cr (200-400 мкм)

ОБРАЗЦЫ: d=16 мм, длина=65-160 мм;

ПАРАМЕТРЫ ДКУП:

- Разгон образца при помощи порохового заряда.
- Матрицы из 2-х каналов d=16 и 14 мм, пересекающихся под углом 90° (радиус внутреннего угла закругления каналов: <u>R=0</u>)
- Начальная скорость образцов (V₀) 230-250 м/с.
- Количество проходов (n=1 и n=4)
- <u>Скорость деформации материала 10⁴-10⁵ с⁻¹.</u>
- <u>Длительность одного цикла прессования 5·10⁻⁴ с</u>.
- Давление в области угла поворота ≤1,5-2 ГПа.

Патент РФ 2006 г. (№ 2283717) «Способ динамической обработки материалов» авторы: Шорохов Е. В., Жгилев И.Н. (*РФЯЦ-ВНИИТФ, Снежинск*), Валиев Р.З. (*УГАТУ, Уфа*)

Анализ структуры меди, полученной методом ДКУП, n=4

Металлографическое изображение волнообразной волокнистой структуры

Электронно-микроскопическое изображение СМК + НК структуры Зерна размером 50- 350 нм внутри волокон меди

Карты распределения зерен в СМК + НК меди по типу границ, размерам и кристаллографической ориентировке. Данные EBSD анализа.

Участок межзеренной границы в меди и Фурье-изображение, полученное с правого зерна (межплоскостное расстояние =0,210 нм) Наноразмерные (5-7 нм) участки внутри зерна. Высокоразрещающая электронная микроскопия.

30-35% - до 100 нм (НК структура); 70-65% - 150- 350 нм (СМК структура)

Гистограммы распределения зерен по размерам

Гистограмма распределения зерен по типу границ

Влияние дисперсности структуры меди, полученной методом ДКУП, на механические свойства

Исходное КК состояние,100 мкм отжиг 450°С

СМК структура 0,2-0,5 мкм ДКУП, n=1

СМК +НК структура 0,05-0,35 мкм ДКУП, n=4

Механические и физические свойства образцов меди после различных обработок

Диаграммы растяжения образцов меди с различной структурой 1- исходное КК состояние 2 –СМК структура (ДКУП, n=1 Vн=230 м/с) 2а-СМК структура (ДКУП, n=1 Vн=250 м/с) 3 –СМК+НК структура (ДКУП, n= 4)

№ п/п	Режимы обработки; (размер зерна)	CL, CS, V	Нv, м⊓а	О 0.2, МПа	б в, МПа	δ, %
1	Исх. состояние КК структура (100 мкм)	C∟ =4653 м/с, Cs =2239 м/с, v =0.3494	780	304	312	37
2	ДКУП, n=1,Vн=230 м/с	CL =4684 M/C, Cs =2301 M/C	1480	362	369	22
2a	СМК структура (0,2-0,5 мкм)	v =0.3410	1500	386	400	30
3	ДКУП, n=4; СМК +НК структура (0,05-0,35 мкм)	C∟ =4705 м/с, Cs =2143 м/с, v =0.3691	1560	414	440	19

СL – скорость продольной волны; Сs–скорость поперечной волны; ν– коэффициент Пуассона Нv-микротвердость; σ₀.2 – предел текучести; σв – предел прочности; δ – относительное удлинение

Динамические свойства меди при испытании на ударное сжатие

Схема ударно-волнового нагружения

•Р тах ударного сжатия образцов - 5,6-6,9 ГПа, скорость деформирования в разгрузочной части волны сжатия перед откольным разрушением -(0,9-2,0)·10⁵ с⁻¹.

•Регистрацию профилей скорости свободной поверхности Ufs(t) осуществляли при помощи лазерного Доплеровского измерителя скорости VISAR, имеющего временное разрешение ~ 1 нс и пространственное ~0.1 мм².

Волновые профили образцов меди:

- исходная КК структура (100 мкм);
 – СМК структура (0,2-0,5
- мкм) после ДКУП, n=1;
- 3 –СМК+НК структура (0,05-
- 0,40 мкм) после ДКУП, n=4.

№ п/п	Режимы обработки; размер зерна	Р _{max} , ГПа	U <i>fs</i> max, м/с	U <i>hel</i> , м/с	∆Ufs, м/с	σ не∟, ГПа	Ү, ГПа	σ sp, ГПа	hsp, мм
1	Исх. состояние (отжиг, 450 °C); КК структура (100 мкм)	6.82	365	-	109	0.10	0.05	1.86	0.28
2	ДКУП, n=1; СМК структура (0,2-0,5 мкм)	5.60	303	30	104	0.62	0.30	1.79	0.26
3	ДКУП, n=4; СМК+НК структура (0,05-0,40 мкм)	6.62	362	33	148	0.71	0.30	2.51	0.26

Обозначения: Рmax – максимальное

гтах – максимальное
давление ударного сжатия
Ufsmax – максимальная
скорость свободной
поверхности
UHEL – скорость
поверхности на фронте
упругого предвестника
AUfs – величина спада
скорости от максимума до
первого минимума в
момент откола

бнец – динамический предел упругости **Y –** динамический предел текучести

Озр – динамическая (откольная) прочность hsp– толщина откольной пластины

Показано, что ДКУП, n=1 меди, приводящее к измельчению зерна от 100 до 0.5 мкм, в 6 раз увеличивает **Оне** и **Y** меди. Формирование СМК+НК структуры с размером зерен 50-350 нм при ДКУП, n=4 увеличивает **О** в 1.4 раза, по сравнению с исходным КК состоянием.

Отметим, что **оsp** меди с СМК+НК структурой составляет 2510 МПа, что в 5.7 раз превышает **о**в меди (440 МПа).

Влияние легирования Cr и Zr на волновые профили образцов меди

Показано, что ДКУП, n=1 меди, приводящее к измельчению кристаллитов от 100 до 0.5 мкм, в 6 раз увеличивает динамический предел упругости (онеL) и динамический предел текучести (Y) меди. Формирование СМК+НК структуры с размером кристаллитов 50-350 нм при ДКУП, n=4, увеличивает динамическую (откольную) прочность меди в 1.4 раза, по сравнению с исходным КК состоянием В сплавах Cu-0.03%Zr и Cu-0.1%Cr ДКУП, n=1 увеличивает онеL и Y в1.9-2.8 раза, соответственно. Измельчение кристаллитов ДКУП, n=3 до 0.2-0.4 мкм увеличивает динамические свойства сплава Cu-0.1%Cr в 1.5-3.7 раз по сравнению с исходным КК состоянием.

Влияние легирования Zr и Cr на динамические свойства меди

№ п/п	Режим обработки и структура (размер зерен-субзерен)	Рmax, ГПа	Ufs max, м/с	UHEL, м/с	∆Ufs, м/с	σ _{HEL} , ΓΠα	Ү, ГПа	σ _{SP} , ΓΠа	hsp, MM
1	Исх. состояние, закалка 1000°С, КК (200-400 мкм)	6.98	373	10	167	0.22	0.11	3.22	0.30
2	ДКУП, n=1, МК (1-5 мкм)	6.18	333	20	157	0.41	0.18	2.90	0.35
3	ДКУП, n=3, СМК (0.2-0.4 мкм)	6.20	334	20	122	0.42	0.20	2.31	0.34

Cu-0.03%Zr

Cu-0.1%Cr

№ п/п	Режим обработки и структура (размер зерен-субзерен)	Pmax, ГПа	Ufs max, м/с	UHEL, м/с	∆Ufs, м/с	σ _{HEL} , ΓΠα	Ү, ГПа	σ _{sP} , ΓΠa	hsp, MM
1	Исх. состояние, закалка 1000°С, КК (200-400 мкм)	5.73	310	8.7	90	0.19	0.12	1.90	0.37
2	ДКУП, n=1, МК (1-5 мкм)	6.52	350	26.4	129	0.54	0.21	2.40	0.33
3	ДКУП, n=3, СМК (0.2-0.4 мкм)	6.20	334	33.5	146	0.70	0.31	2.76	0.34

Ртах – тах тах давление ударного сжатия; Ufs max – тах скорость свободной поверхности; UHEL – скорость поверхности на фронте упругого предвестника; ΔUfs – величина спада скорости от тах до первого min в момент откола; онец – динамический предел упругости; Y – динамический предел текучести оsp- динамическая (откольная) прочность; hsp- толщина откольной пластины

ЗАКЛЮЧЕНИЕ

- Изучено влияние дисперсности неравновесной дефектной СМК структуры меди и сплавов Cu-0,03%Zr и Cu-0,1%Cr, полученной методом ДКУП, на динамические свойства при испытаниях на ударное сжатие интенсивностью 5,6-6,9 ГПа и скоростью деформации (0,9-2,0)·10⁵ с⁻¹.
- Показано, что ДКУП, n=1, приводящее к измельчению кристаллитов от 100 до 0,5 мкм, в 6 раз увеличивает динамический предел упругости и динамический предел текучести меди, по сравнению с исходным КК состоянием.
- Определено, что формирование СМК+НК структуры с размером кристаллитов 50-350 нм при ДКУП, n=4, увеличивает динамическую (откольную) прочность меди в 1,4 раза, по сравнению с исходным КК состоянием.
- Показано, что ДКУП, n=1 сплавов Cu-0,03%Zr и Cu-0,1%Cr увеличивает динамический предел упругости и динамический предел текучести в 1,9-2,8 раза, соответственно.
- Установлено, что ДКУП, n=4 сплава Cu-0,1%Cr, приводящее измельчению кристаллитов до 0,2-0,3 мкм увеличивает динамические свойства сплава в 1,5-3,7 раза, по сравнению с исходным КК состоянием, что обусловлено выделением наноразмерных частиц хрома в процессе ДКУП.
- Отметим, что динамическая (откольная) прочность СМК+НК меди и сплава Cu-0,1%Cr с СМК структурой, полученной при ДКУП, составляет 2510 и 2760 МПа, что более, чем в 5 раз превышает предельное сопротивление до разрушения σВ данных материалов с аналогичной структурой.

Структура сплава Cu-0.03%Zr и Cu-0.1%Cr после ДКУП

Результаты EBSD анализа сплава Cu-0.1%Cr с СМК структурой, полученной методом ДКУП

Гистограммы распределения зерен по размерам и типу границ, ДКУП, 1 проход

Гистограммы распределения зерен по размерам по типу границ, ДКУП, 3 прохода

Результаты EBSD анализа структуры сплава Cu-0.03%Zr после ДКУП

Карты распределения зерен в сплаве Cu-0.03%Zr, с СМК структурой, полученной методом ДКУП, n=3 по кристаллографической ориентировке, типу границ и размерам

Гистограмма распределения зерен по типу границ