

РФЯЦ-ВНИИТФ им. академика Е.И.Забабахина

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Одномерные расчеты запасов по зажиганию мишеней прямого облучения для мегаджоульных установок с длиной волны лазерного излучения 0,35 мкм и 0,53 мкм.

В.А.Лыков, Е.С.Бакуркина, Н.Г. Карлыханов, Г.Н. Рыкованов, И.А. Химич и В.Е.Черняков

XIV Международная конференция «Забабахинские научные чтения» (18-22 марта 2019г, Снежинск).

Содержание доклада

ВВЕДЕНИЕ

- 1. Генерация быстрых электронов в процессах двухплазмонного распада и вынужденного Рамановского рассеяния
- 2. Модель нелокального электронного теплопереноса
- 3. Модель СВЕТ- передача энергии при пересечении лазерных пучков
- 4. Верификация новой модели поглощения лазерного излучения по экспериментам, проведенным на установках OMEGA и NIF
- 5. Моделирование мишеней прямого облучения для мегаджоульных установок с излучением во 2-ой и 3-ей гармоник Nd-лазера ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

Российская лазерная установка^{*)} будет работать на 2-ой гармонике излучения Nd-лазера, - в отличие от мегаджоульной установки NIF, который работает на 3-ей гармонике Nd-лазера.

При увеличении длины волны лазера усиливается роль нелинейных процессов, приводящих к рассеянию лазерного излучения и генерации быстрых (надтепловых) электронов.

Быстрые электроны, проникая в плотные слои мишени, вызывают их разогрев, что препятствует достижение условий, необходимых для термоядерного зажигания мишени.

Поэтому вопросы взаимодействия лазерного излучения с плазмой представляются весьма актуальными при планировании экспериментов на установке с длиной волны лазерного излучения $\lambda = 0.53$ мкм.

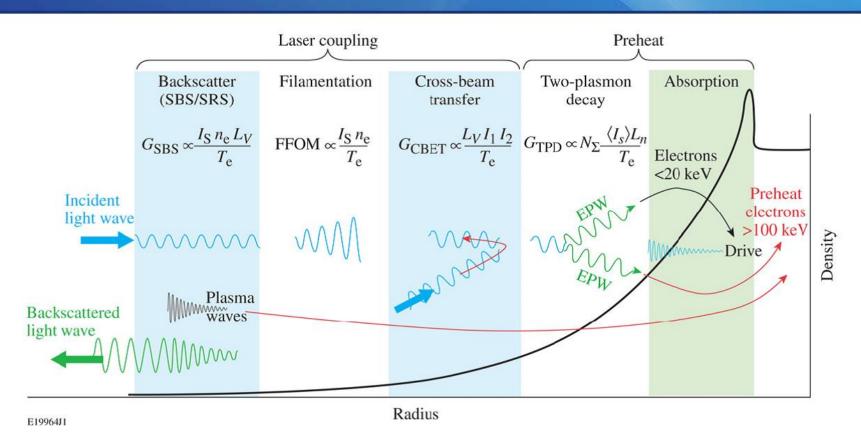
Современная технология расчетов мишеней прямого облучения по 1D- программе ЭРА

Современная технология расчетов мишеней прямого облучения по 1D- программе ЭРА включает:

- Двухтемпературную газовую динамику;
- Спектральный кинетический перенос излучения;
- УРС и спектральные пробеги излучения, рассчитанные по программе RESEOS;
- Учет турбулентного перемешивания по ке-модели;
- Кинетику т.я. реакций;
- Перенос энергии нейтронами и альфа частицами ДТ-реакций;
- Модель поглощения лазерного излучения с учетом генерации быстрых электронов в процессах двухплазмонного распада (ДПР) и вынужденного Рамановского рассеяния (ВРР);
- Нелокальный электронный теплоперенос.
- Вынужденное рассеяние Мандельштама- Бриллюэна (ВРМБ) с учетом передачи энергии в пересекающихся лазерных пучках (СВЕТ).

Модель поглощения лазерного излучения с учетом двухплазмонного распада и вынужденного Рамановского рассеяния

В основу новой модели поглощения лазерного излучения сферической мишенью положена разработанная ранее физическая модель [1], которая самосогласованным образом учитывала:


- обратно-тормозное, резонансное и параметрическое поглощение лазерного излучения;
- укручение профиля плотности;
- рефракцию лазерного излучения;
- вынужденное рассеяние Мандельштама- Бриллюэна;
- особенностей фокусировки лазерного излучения на мишень.

В работе [2] эта модель была дополнена учетом генерации быстрых электронов в процессах двухплазмонного распада [3] и вынужденного Рамановского рассеяния [4].

- [1] Е.Н.Аврорин, А.И.Зуев, Ю.Н.Лазарев, В.А.Лыков, Н.П.Ситников, О.С.Широковская. ВАНТ. Методики и программы числ. решения задач мат. физики, вып. 2, 1985, стр. 10-20.
- [2] В.А. Лыков и др., Доклад на конференции ЗНЧ-2017 (Снежинск, 2017) www.vniitf.ru
- [3] S. X. Hu, et al, Physics of Plasmas 20, 032704 (2013).
- [4] A. Colaitis, et al, Physical Review E 92, 041101(R) (2015).

Основные процессы взаимодействия лазерного излучения с плазмой в короне ИТС-мишеней

Профиль плотности и процессы взаимодействия лазерного излучения в короне мишеней прямого облучения*).

Поглощение лазерного излучения при двухплазмонном распаде фотона в плазме

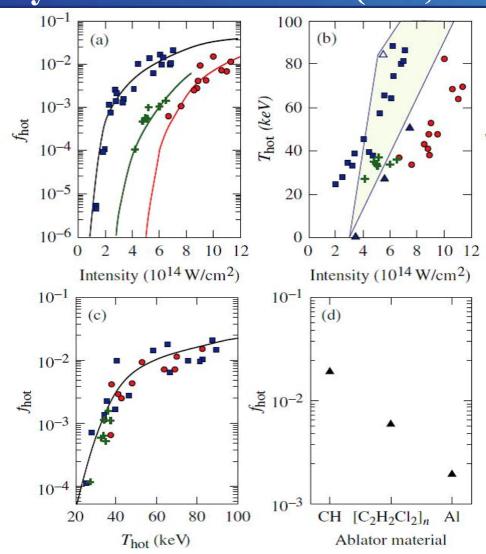
Двухплазмонный распад - нелинейный процесс в плазме, в результате которого электромагнитная волна с частотой (ω_0) распадается на две продольные (Ленгмюровские) волны:

$$\omega_0 = \omega + \omega$$
 $\vec{k}_0 = \vec{k} + \vec{k}$

Коэффициент поглощения ЛИ за счет двухплазмонного распада в области плотности, равной четверти критической равен*):

$$A_{qc} = \begin{cases} f_{qc} \cdot 0.01 \cdot (G_{qc}/4)^6, \text{ если } G_{qc} < 4 \\ \\ \min\{0.15; f_{qc} \cdot 0.01 \cdot (G_{qc}/4)^{1.2}\}, \text{ если } G_{qc} \ge 4, \end{cases}$$

где:
$$G_{qc} = 4 \cdot 10^4 \frac{}{} \left(\frac{L_{qc}}{\lambda}\right) \frac{I_{qc}\lambda^2}{T_e} \xi_{qc}$$
; $L_{qc}(c_M)$ - масштаб неоднородности


плотности, $T_{eqc}(\kappa \ni B)$ - температура электронов, $I_{qc}[10^{14}~{\rm Bt/cm^2}]$ - интенсивность лазерного излучения в области плотности $\rho_{qc}=\rho_c/4$; ξ_{qc} - эмпирический параметр порядка 1.

Процесс двухплазмонного распада приводит к генерации быстрых электронов с эффективной температурой:

$$T_{h2} = 15 \cdot \max\{1; (G_{qc} - 1)\}$$
 [кэВ]

Генерация быстрых электронов (БЭ) при двухплазмонном распаде на 60-лучевой установке ОМЕГА (λ=0,35 мкм).

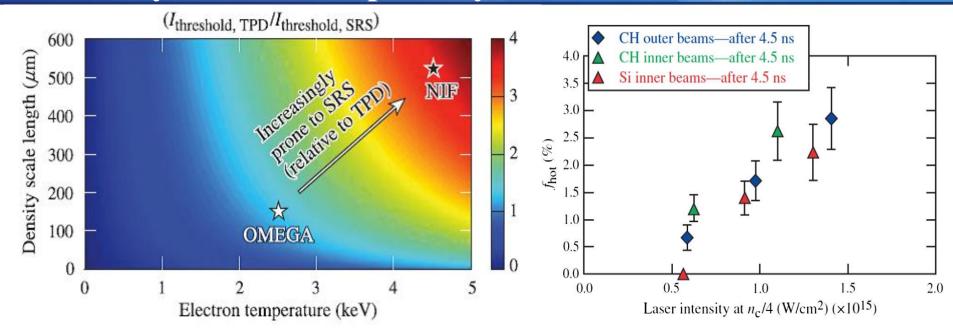
- а) Коэффициент конверсии лазерной энергии в быстрые электроны (f_{hot}) ;
- b) Температура БЭ (T_{hot}) для трех геометрий облучения: 4-х лучевая плоская (квадраты), 19-и лучевая плоская (кресты) и 60-и лучевая сферическая (кружки); треугольники расчет T_{hot} программам ZAK и QZAK;
- c) Измеренный f_{hot} от T_{hot} ;
- d) Измеренные $f_{\rm hot}$ для разных материалах при 4-х лучевой плоской геометрии облучения с интенсивностью лазерного излучения $I_{\rm qc}{\sim}7\times10^{14}\,{\rm Bt\cdot cm^{-2}}$ ($\lambda{=}0{,}35\,{\rm mkm}$).

^{*)} D.H. Froula et al, Plasma Phys. Control. Fusion 54 124016 (2012).

Поглощение лазерного излучения с учетом вынужденного Рамановского рассеяния

Коэффициент поглощения ЛИ при вынужденном Рамановском рассеяния в области плотности, ниже четверти критической равен [1]:

$${f A}_{SRS}=0,125\cdot\{1-\exp[-({f G}_{SRS}^{1/3}-1)]\},\,\,$$
 если ${f G}_{SRS}\geq 1$ если ${f G}_{SRS}<1,$


где $G_{SRS} = 215 \cdot L_{qc}^{4/3} \lambda^{2/3} \cdot I_{qc} \cdot \frac{< Z>}{< Z^2>} \xi_{SRS}$; λ (мкм)- длина волны лазерного излучения; L_{qc} (см)-масштаб неоднородности; I_{qc} [10^{14} BT/см 2] - интенсивность лазерного излучения в области плотности, равной четверти критической: $\rho_{qc} = \rho_c/4$; ξ_{SRS} -- параметр порядка 1.

Процессы Рамановского рассеяния приводят к генерации быстрых электронов с эффективной температурой [1]:

$$T_{h3}=T_{eqc}\left(1+3\cdot\Delta_{SRS}^2\right)/\Delta_{SRS}^2\quad [\ \ \kappa \ni B],$$
 где параметр $\Delta_{SRS}\approx 0,3$ [1].

Роль вынужденного Рамановского рассеяния возрастает при переходе к мегаджоульным лазерным установкам

Отношение порогов двухплазмонного распада и вынужденного Рамановского рассеяния как функция температуры электронов и размера неоднородности плотности. Условия экспериментов на NIF (OMEGA) представлены темными (светлыми) звездочками.

Коэффициент конверсии лазерного излучения в быстрые электроны как функция лазерной интенсивности I_{qc} в экспериментах на установке NIF с разными материалами абляторов

Ограничение электронной теплопроводности и нелокальный электронный теплоперенос в рояц-вниито лазерной плазме

Необходимость учета нелокальности возникает, когда пробеги (λ_e) электронов со скоростью $v_e \approx (3-5)\sqrt{T_e/m_e}$ становятся сравнимы с $L_T \approx (d\ln T_e/dx)^{-1}$.

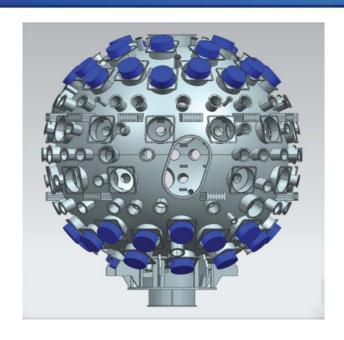
Часто Спитцеровский электронный поток тепла $(q_{SH}=-\kappa_e \nabla T_e)$ ограничивают предельным потоком $q_e^*=fn_eT_e\sqrt{T_e/m_e}$, где f -эмпирический коэффициент, который зависит от отношения L_T/λ_e и равен $f\approx 0,06-0,15$.

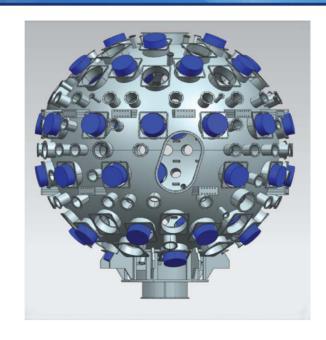
В программе ЭРА реализована модель нелокального электронного теплопереноса из работы [1], где Спитцеровский электронный поток тепла заменяется на интегральную свертку этого потока с функцией Грина по всему пространству вида:

$$\begin{split} q_{e,NL}(x) &= \int_{-\infty}^{\infty} q_{SH}(x') G(x,x') dx', \ G(x,x') = \frac{\xi(\eta(x'))}{\pi a_e \lambda_e(x')}, \\ \xi(\eta) &= \int_{0}^{\infty} dp \frac{\cos(\eta p)}{1 + p^{0.9}}, \ \eta = \left| x - x' \right| / a_e \lambda_e(x'), \ \lambda_e = \sqrt{\langle Z \rangle^2 / Z} \cdot \lambda_{ei}, \\ \lambda_{ei} &= \frac{3T_e^2 \langle Z \rangle}{4\sqrt{2\pi} \langle Z^2 \rangle n_e e^4 \Lambda_{ei}}, \ a_e = a_{e0} \frac{\langle Z^2 \rangle + 5 \langle Z \rangle}{\langle Z^2 \rangle + 12 \langle Z \rangle}, \ a_{e0} \approx 10. \end{split}$$

Выражение для $q_{e,NL}$ переходит в Спитцеровский поток q_{SH} , когда выполняются условиях применимости электронной теплопроводности, т.е. при $\lambda_e << L_T$.

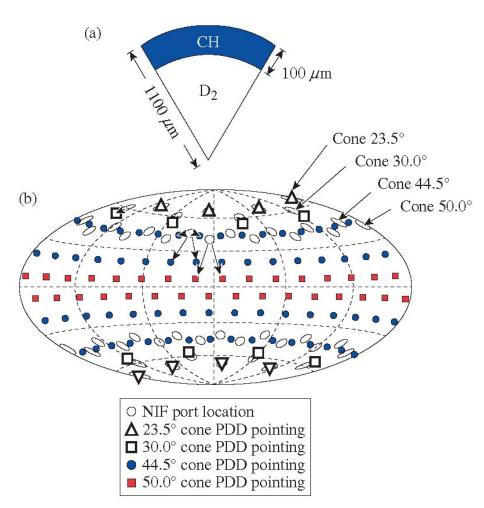
Учет ВРМБ и перекачки энергии в пересекающихся лазерных пучках (СВЕТ)



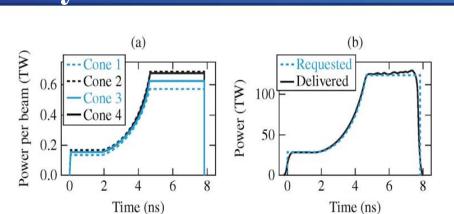

В программе ЭРА процесс ВРМБ учитывается введением коэффициента ослабления лазерного излучения: $k_B [\text{см}^{-1}] = 50 \cdot \frac{\rho}{\rho_c} \cdot \frac{I\lambda}{T_e} \cdot \xi_B$, где λ [мкм] - длина волны, $[10^{14} \, \text{Вт/см}^2]$ - интенсивность падающего ЛИ; ρ [г/см³] – плотность; T_e [кэВ] - температура электронов, ρ_c [г/с м³]- критическая плотность; $\xi_B \approx 1$ - параметр модели.

В РФЯЦ-ВНИИТФ разработана физическая модель и математическая программа [1] для проведения 3D- расчетов распространения и поглощения лазерного излучения в короне мишени прямого облучения. Модель учитывает реальную геометрию облучения мишени на многопучковой лазерной установке, рефракцию и обратно-тормозное поглощение лазерного излучения в геометрико-оптическом приближении, передачу энергию в пересекающихся лазерных пучках (СВЕТ) [2].

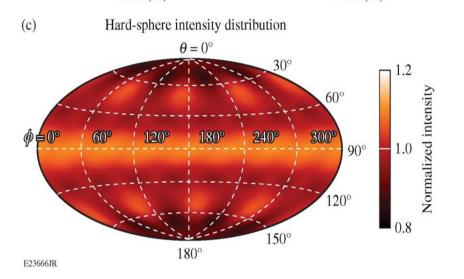
- 1. I.A. Khimich and V.A. Lykov, Book of abstracts of 10th International conference on Inertial Fusion and Applications, September 11-15, 2017, St Malo, France, p.84.
- 2. I.V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012).


Верификация модели с использованием данных по прямому облучению сферической мишени рояц-вниито на установке NIF

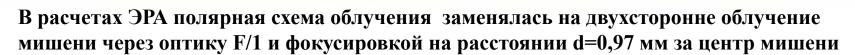
Мишенная камера установки NIF для облучения мишеней с непрямым воздействием (слева). Реконфигурация камеры для прямого облучения мишеней (справа) требует остановки экспериментов. Вместо этого было предложено использовать схему полярного облучения мишеней с прямым воздействием (PDD - polar-direct-drive) [1].


Верификация модели с использованием данных по прямому облучению сферической мишени рфяц-вниитф на установке NIF

Типичная мишень и схема облучения, которые использовались в экспериментах по полярному облучению мишеней на установке NIF. Открытые кружки расположение оптики на мишенной камере. Красные квадраты и синие кружки – точки прицеливания лучей на поверхности мишени (из работы [1])


E23751JR

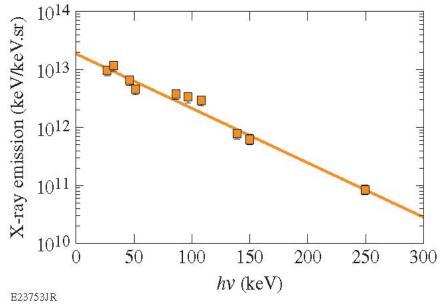
Верификация модели с использованием данных по прямому облучению сферической мишени на установке NIF


Мощности лазерного излучения от времени в опыте #131210 (а);

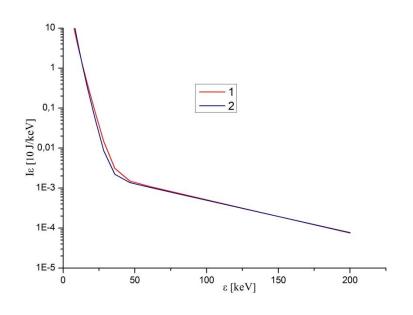
Сравнение затребованной формы лазерного импульса и в опыте (b);

Проекция распределения интенсивности лазерного излучения на сферу с диаметром мишени (c) (из работы [1])

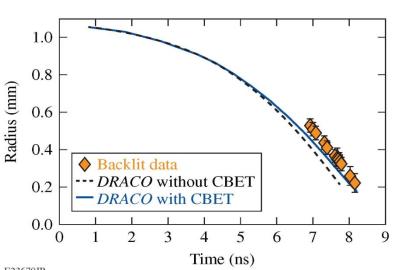
Верификация модели с использованием данных по прямому облучению сферической мишени на установке NIF


Поглощение и рассеяние ЛИ в расчетах ЭРА для опыта #131210 на NIF [1]

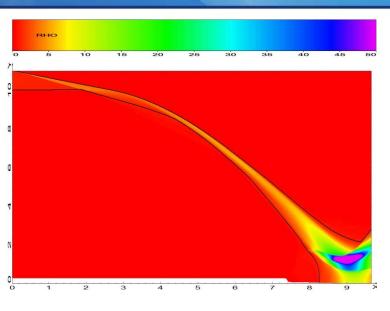
Nº	NL	f	K _a %	N _{dt} 10 ¹²	t _{on}	Т _{qc} кэВ	A _{p+n} %	A _{qc}	A _{SRS}	Т _{p+n} кэВ	Т _{qc} кэВ	E _{hot} кДж	R ₆ %
Эксп.[1]	-	-	•	-	-	-	-	ı	~0,1	ı	~46	~2,5	-
1	1	0,15	62	2,5	9,16	2,8	0,03	0,94	0	2,6	51	2,3	37
2	+	-	62	3,3	9,12	2,8	0,03	0,88	0	2,7	50	2,4	37


Здесь: NL- учет нелокального электронного теплопереноса; f - коэффициент в предельном потоке $q_{e,npeo}=f\cdot n_e T_e \sqrt{T_e/m_e}$; K_a — доля поглощенной энергии ЛИ; $t_{on}(hc)$ - момент генерации нейтронов; N_{dd} - нейтронный выход; T_{qc} (кэВ) —температура электронов при $n_e=n_{ec}/4$ на момент t=7,5 нс; A_{p+n} , A_{qc} , A_{SRS} — доли энергии, поглощенные за счет резонансного и параметрического поглощения, двухплазмонного распада, Рамановского рассеяния, температуры их БЭ: T_{p+n} , T_{qc} , соответственно; $E_{hot}(J_{cm})$ — разогрев мишени от БЭ; R_{bc} - коэффициент отражения лазерного излучения за счет ВРМБ (СВЕТ) при ($\xi_{bc}=2$). Разогрев мишени от быстрых электронов составил ~ 2,5 кДж или ~ 0,4% от E_{L} . Учет ВРМБ ($\xi_{bc}=2$)снизил эффективность поглощения ЛИ с 90% до 60 % от E_{L} , что согласуется с расчетами [1], проведенных без и с учетом процесса СВЕТ.

по прямому облучению сферической мишени



Спектр рентгеновского излучения, зарегистрированный в опыте #131210. Сплошная линия отвечает быстрым электронам с температурой T_h≈46±2 кэВ и полной энергией $E_h \approx 2.5 \pm 0.3$ кДж [1]



Спектр рентгеновского излучения в расчетах по программе ЭРА для опыта #131210. Спектр отвечает эффективной температуре $T_p \approx 50$ кэВ и энергии быстрых электронов, переданной в мишень QBE ≈ 2.4 кДж.

Верификация модели с использованием данных по прямому облучению сферической мишени на установке NIF

Траектория плотной части оболочки: Эксперимент (ромбы), расчет DRACO без учета CBET (пунктир) и с учетом CBET (сплошная синяя линия) [1]

Распределение плотности в расчете ЭРА в координатах: время в [нс] - Эйлеров радиус в [100 мкм]. Сплошные черные линии – изолинии с плотностью 1 г/см³

Предложенная модель поглощения лазерного излучения успешно выдержала проверку при сравнении с данными, полученными на NIF и с аналогичными расчетами, выполненными по программе DRACO [1].

Условия термоядерного зажигания

Для термоядерного зажигания ДТ-топлива при сжатии мишени ИТС необходимо, чтобы ее центральная область («горячее пятно» – «спичка» по Л.П.Феоктистову):

- 1. Была свободна от примесей (< 2% по частицам с малым Z~6);
- 2. Нагрета до температуры $T_i \sim 5 \ \kappa \ni B$;
- 3. Имела ρR~0,3 г/см², где ρ плотность, R-радиус «спички».

Поэтому тепловая энергия «спички» должна быть:

 $E_T(\kappa Дж)>26~(50/\rho)^2$, а давление в центре - $P(0)>300\cdot(\rho/50)$ Гбар.

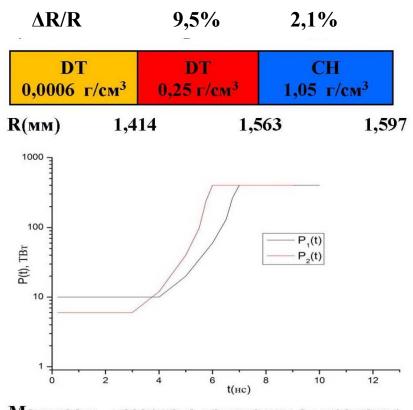
Более строгое условие достижения термоядерного зажигания:

$$W_{Q} = (n-1) \int_{0}^{t_{\rho_{max}}} \frac{dQ_{T.s.}/dt}{E+Q} dt > 1,$$

где: $dQ_{\text{т.я.}}/t$ - скорость нагрева топлива продуктами ДТ-реакции; Е- внутренняя энергия, Q - потери энергии из «горячего пятна», n - показатель степени при аппроксимации скорости термоядерных реакций.

Эксперименты на NIF*): $N_{dt}\sim 2\cdot 10^{16}$; $E_T\sim 57$ кДж; $T_i\sim 5$ кэВ; $P\sim 360$ Гбар; $W_Q\sim 0.5$.

Расчеты мишеней прямого облучения по программе ЭРА


Расчеты проводились по программе ЭРА [1] в двухтемпературном газодинамическом приближении с учетом электронной и ионной теплопроводностей, переноса излучения в спектральном кинетическом приближении. Ограничение электронной теплопроводности задавалось предельным потоком с коэффициентом f=0,15 или учитывалось по модели нелокального электронного теплопереноса [2]. В расчетах мишеней с учетом термоядерного горения ДТ- топлива учитывался перенос альфа-частиц и нейтронов в одногрупповом кинетическом приближении. Использовались УРС и пробеги излучения, рассчитанные по модели и программе RESEOS [3].

- [1] Барышева Н.М., Зуев А.И., Карлыханов Н.Г., Лыков В.А., Черняков В.Е. Журнал вычислительной математики и математической физики, 22, 401, (1982).
- [2] Брантов А.В., Быченков В.Ю., Тихончук В.Т, и Розмус В., ЖЭТФ, 110, 1301 (1996).
- [3] Ovechkin A.A., Loboda P.A., Novikov V.G. et al. HEDP. 13, 20 (2014).

1D- моделирование мишени прямого облучения для мегаджоульных установок

В работе [1] предложена мишень прямого облучения для зажигания на Российской лазерной установке с энергией ~ 2 МДж и длиной волны λ = 0,53мкм.

Мощность лазерного излучения от времени: $P_1(t)$ – из работы [1], $P_2(t)$ – исправленная.

Условия облучения:

- Энергия лазера 2,5 МДж;
- 48 лазерных пучков;
- оптика F/8;
- фокусировки –на 1,6 2,0 мм за мишень;
- размер фокального пятна 400 мкм.

Учитываемые процессы:

- 2-х температурная газовая динамика;
- электронная теплопроводность с ограничением потока (f=0,15);
- спектральный кинетический перенос излучения (41 групп по є и 16 групп по µ);
- поглощение и отражение лазерного излучения, генерация и перенос энергии
 БЭ в 3-х групповом приближении;
- Учет ВРМБ $\xi_{\rm B}$ =1;

Результаты расчетов мишени прямого облучения с учётом ВРМБ и разогрева быстрыми электронами

NºNº	Е ₀ МДж	λ мкм	$\xi_{f b}$	f_{qc}	f _{SRS}	K _a %	E _{БЭ} /E _a	R _Б	$\mathbf{W}_{\mathbf{Q}}$	Е _{т.я.} МДж	Е* _{т.я.} МДж
1	2,5	0,53	0	0	0	84	0	0	2,6	0,70	42
2	2,5	0,53	1	1	1	42	2,2	57	0,3	0,02	0,03
3	2,0	0,35	1	1	1	66	1,3	32	1,0	0,15	0,82
4	2,0	0,35	0	0	0	97	0	0	3,3	1,35	39

Здесь: Ε₀ и λ - энергия и длина волны ЛИ, падающего на мишень;

 $\xi_{\rm F}$ - множитель при коэффициента рассеяния за счет ВРМБ;

 \mathbf{f}_{qc} , \mathbf{f}_{SRS} – множители при коэффициенте генерации БЭ за счет ДПР и ВРР

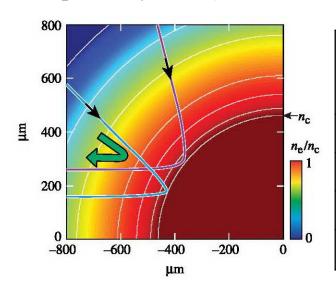
К_а – доля поглощенной мишенью энергии лазерного излучения;

Е_{БЭ}/**Е**_а – разогрев мишени быстрыми электронами;

R_Б – коэффициент отражения ЛИ за счет ВРМБ;

 $\mathbf{W_{O}}$ – запас по зажиганию с учетом теплопроводности для неоднородной мишени;

 $E_{_{\text{т.я.}}}, E_{_{_{\text{т.я.}}}}^{*}$ - выход термоядерной энергии без и с учетом термоядерного горения топлива.


С учетом ВРМБ, ДПР и ВРР мишень [1] не горит даже в 1-D расчетах.

Переход на λ =0,35 мкм увеличивает W_Q в \sim 3 раза

3-D расчеты поглощения лазерного излучения с учетом СВЕТ в мишени прямого облучения для мегаджоульной установки с длиной волны излучения 0,53 мкм

В РФЯЦ-ВНИИТФ разработана математическая программа для проведения 3D- расчетов распространения и поглощения лазерного излучения в короне мишени прямого облучения с учетом передачи энергии в пересекающихся лазерных пучках (Cross-Beam Energy Transfer = CBET).

Влияние СВЕТ на поглощение лазерного излучения в мишени прямого облучения *) для мегаджоульной установки с длиной волны излучения 0,53 мкм								
учет СВЕТ А, %								
Нет 88								
Да 49								
А – коэффициент поглощения								

Согласно 3D-расчетам СВЕТ может привести к уменьшению эффективности поглощения ЛИ в ~ 2 раза в экспериментах с мишенями прямого облучения *)

Чтобы избавиться от процесса СВЕТ, следует «развязать» лазерные пучки, сместив центры их спектральных линий на $\sim 10\text{--}20~\text{Å}$.

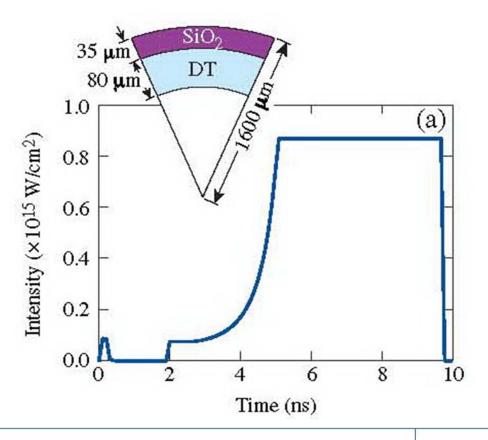
Способы «обхода» (минимизации) процессов генерации быстрых электронов

Для минимизации генерации быстрых электронов возможны следующие подходы:

- 1. Снижение интенсивности лазерного излучения на мишени прямого облучения, что требует перехода на более тонкие оболочки при сохранении их массы.
- 2. Пороги плазменных неустойчивостей возрастают при увеличении среднего <Z> аблятора, поэтому вместо СН можно использовать, например, стекло.

Ниже приведены 1D- расчеты таких мишеней, выполненные в РФЯЦ-ВНИИТФ для мегаджоульных установок с излучением во 2-ой и 3-ей гармониках Nd-лазера

1D- расчеты «раздутой» мишени и мишени с SiO₂-оболочкой для мегаджоульных установок



Модификация мишени из работы [1]: Относительная толщина оболочек уменьшена в ~1,6 раза при сохранении их массы.

 $\Delta R/R$ 6% 1,4% $\begin{array}{c} D_{0.5} \ T_{0.5} \\ 0.25 \ \text{г/cm}^3 \end{array}$ $D_{0.5} T_{0.5}$ CH 0.0006 г/cm^3 $1,05 \text{ г/cm}^3$ 1,715 1.825 1,85 R(MM) 100 - $P_{L}(t)$ 6 t (HC) 8

Зависимость мощности от времени (отн. ед.)

Мишень с SiO₂-оболочкой и лазерный импульс из работы: V. A. Smalyuk, et al, PRL 104, 165002 (2010)

Результаты 1D- расчетов запасов по зажиганию трех типов мишеней для мегаджоульных установок с излучением во 2-ой и 3-ей гармониках Nd-лазера

В таблице приведены запасы по зажиганию W_Q для трех типов мишеней согласно 1D-расчетам, проведенным в РФЯЦ-ВНИИТФ с учетом ВРМБ (ξ_B =1) и генерации БЭ. В скобках указаны запасы W_O без учета этих процессов.

ЛАЗЕР	Мишень с СН - оболочкой	«Раздутая» мишень с СН	Мишень с SiO ₂ – оболочкой
λ=0,53 мкм E _L =2,5 МДж	0,3 (2,6)	0,9 (2,2)	0,8 (1,7)
λ=0,35 мкм E _L =2,0 МДж	1,0 (3,1)	1,6 (2.2)	1,4 (1,9)

Без учета разогрева мишени БЭ запасы по зажиганию всех мишеней $W_Q\sim 2$ для длин волн. При учете ВРМБ ($\xi_{\rm E}=1$) и разогрева мишени от БЭ запасы по зажиганию всех мишеней $W_O>1$ при $E_L=2,0$ МДж и $\lambda=0,35$ мкм.

Разработанные модели генерации БЭ основаны на данных, полученных на установках OMEGA и NIF, которые работают на 3-ей гармонике Nd-лазера. Для проверки этих моделей необходимы эксперименты на мощных лазерных установках с длиной волны излучения λ=0,53 мкм.

Результаты расчетов мишени с SiO_2 - аблятором и учетом нелокального электронного теплопереноса для лазерного излучения с E_0 =2,0 МДж и λ =0,35 мкм

№	f	NL	a_{e0}	K _a %	Т _{ес} кэВ	ρ _{max} Γ/cм ³	$(\rho R)_{max}$ Γ/cm^2	Т _{і, max} кэВ	W_Q	Е _{т.я.} МДж	Е* _{т.я.} МДж
1	0,15	-	-	99	5,0	86	1,87	7,4	1,93	0,15	47
2	-	+	10	99	5,4	20	0,70	6,1	0,48	0,03	0,04
3	-	+	5	99	4,9	43	1,17	6,9	1,07	0,08	0,70

Здесь: f - коэффициент в предельном потоке $q_e^*=f \cdot n_e T_e (T_e/m_e)^{1/2}$;

NL – учет/неучет нелокального электронного теплопереноса по модели [1];

 $a_{e\theta}$ – параметр при пробеге электронов в модели нелокального теплопереноса;

К_а – доля энергии ЛИ, поглощенной мишенью;

T_{ec} – температура электронов в области критической плотности на момент t=9,5 нс;

 ho_{max} и $T_{i,\,max}$ – максимальная плотность и ионная температура «горячего пятна» мишени,

 $(\rho R)_{max}$ - поверхностная плотность мишени на момент максимального сжатия;

 $\mathbf{W_Q}$ – запас по зажиганию с учетом теплопроводности для неоднородной мишени;

 $E_{_{\text{т.я.}}}$, $E_{_{_{\text{т.я.}}}}^{*}$ - выход термоядерной энергии без и с учетом термоядерного горения топлива.

Разогрев неиспаренной части мишени надтепловыми электронами в модели нелокального теплопереноса существенно снижает сжатие мишени и запасы по зажиганию.

Необходимо развитие методик и программ для решения кинетического уравнения Ландау для электронов совместно с уравнениями радиационной газовой динамики.

выводы

- 1. В программе ЭРА учтена генерация быстрых электронов (БЭ) в процессах двухплазмонного распада (ДПР) и вынужденного Рамановского рассеяния (ВРР) а также реализована модель нелокального электронного теплопереноса. Проведена верификация моделей при сравнении с экспериментами, выполненными на установках ОМЕGA и NIF.
- 2. Показано, что ВРМБ и генерация БЭ в процессах ДПР и ВКР катастрофически снижают запасы по зажиганию мишеней прямого облучения для мегаджоульных установок при использовании лазерного излучения с длиной волны $\lambda = 0,53$ мкм.
- 3. Запасы по зажиганию возрастают в \sim 3 раза при переходе со 2-ой на 3-ю гармонику излучения Nd-лазера. В расчетах мишени с SiO₂- аблятором получен запас по зажиганию $W_0 \approx 1,5$ и выход термоядерной энергии ~ 50 МДж для установок типа NIF.
- 4. Расчеты, проведенные по программе ЭРА с учетом нелокального электронного теплопереноса, указывают на опасность разогрева мишени при переносе надтепловых электронов из области лазерной короны в плотные слои мишени. Для повышения точности этого эффекта необходимо развитие методик и программ для решения кинетического уравнения Ландау для электронов совместно с уравнениями газовой динамики.
- 5. Необходимо рассмотреть перспективы использования для целей ЛТС мегаджоудьных установок с излучением 4-ой гармоники Nd-лазера или KrF-лазера с длиной волны излучения $\lambda = 0.248$ мкм, для которых снимаются все вопросы, связанные с процессами генерации БЭ, вынужденного рассеяния и нелокальностью электронного теплопереноса.

СПАСИБО ЗА ВНИМАНИЕ

1D-расчеты^{*)} двухкаскадной мишени непрямого облучения с учетом спектрального переноса излучения и турбулентного перемешивания по kε-модели

$\begin{array}{c} \mathbf{D}_{0.5} \mathbf{T}_{0.5} \\ 0,22 \mathbf{\Gamma/cm^3} \end{array}$			и /см ³ 0,	СН 07 г/см ³	Be _{0.96} Cu _{0.04} B 1,94 г/см ³		Be _{0,}	_{0,997} Cu _{0,003} 1,82 г/см ³				T _{f,max} =0,275 кэВ	
0	0,2	0,25 0,3		0,30 0,9		90 0,95		1,2 мм		t ₀ =10 нс			
	Nº	$\alpha_{\rm b}$	V _{тах} мм/нс	ρ* г/см ³	Т _і * кэВ	M _{cl} *	W _Q *	ρ _{max} г/см ³	Т _{і,тах} кэВ	η %	N _{dt} 10 ¹⁷	Е _{т.я.} МДж	
	1	-	0,23	263	2,6	100	2,5	182	32	44	7,8	2,2	
	2	0,04	-	255	2,5	70	1,8	200	12	12	2,1	0,6	
	3	0,07		282	1,8	11	0,8	242	2,4	-	0,03	-	

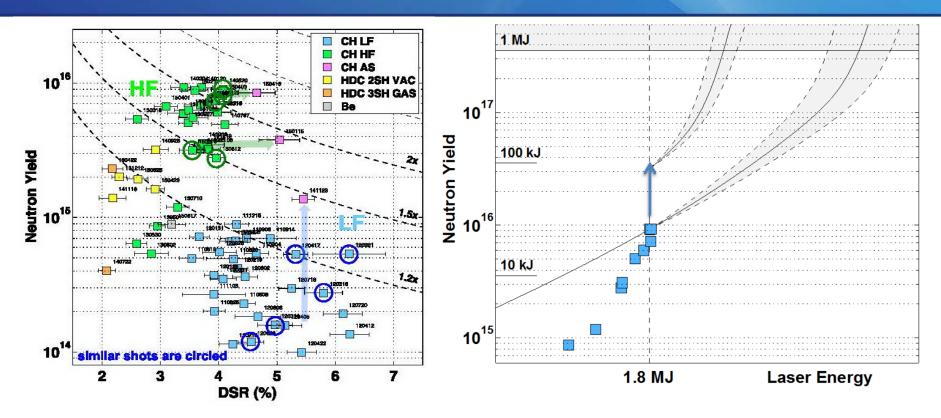
Здесь: V_{тах}- максимальная скорость границы ДТ;

 ρ^* –плотность ДТ, T_i^* - температура ионов, M_{cl}^* - доля массы ДТ, свободной от примесей Au, на момент максимального сжатия;

 ${
m W_Q}^*$ - запас по зажиганию с учетом потерь энергии на теплопроводность и излучение; ${
m
ho_{max}}$ - плотность; $T_{i,max}$ -температура ионов при горении ДТ;

η - выгорание трития;

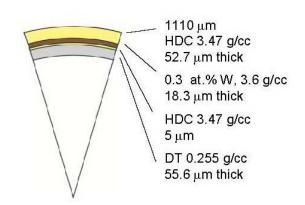
N_{df}- выход нейтронов ДТ-реакции;

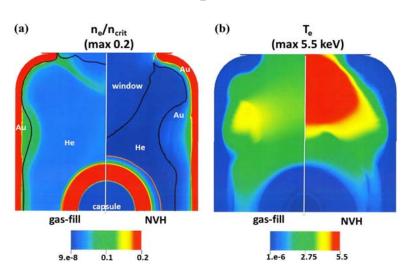

Етя - выход термоядерной энергии.

 $\{\alpha_b\}$ — набор констант $k\epsilon$ -модели, отвечающий автомодельному закону проникновения легкого вещества в тяжелое: L_b = $\alpha_b A g t^2$, A- число Аттвуда, g-ускорение, t - время.

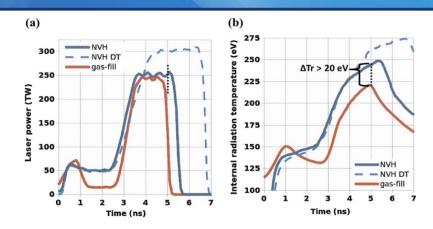
Перемешивание снижает запасы по зажиганию W_Q* в ~ 1,5 раза до W_Q* ≈1-2

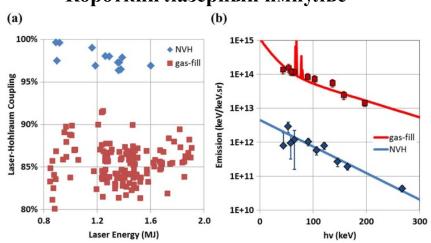
*) В.А. Лыков и др., Оптимизация двухоболочечных мишеней для проведения экспериментов вблизи порога термоядерного зажигания на мегаджоульной лазерной установке, Труды конференции "XVIII Харитоновские тематические научные чтения» Издательство ВНИИЭФ, Саров 2017, стр. 123.


ИТОГИ И ПЛАНЫ ИССЛЕДОВАНИЙ НА NIF


Рекорд NIF*): $N_{dt}\sim 2\cdot 10^{16}$; $\rho R\sim 0.8$ г/см²; $E_{\text{т.я.}}\sim 57$ кДж; $W_Q\sim 0.5$

Планы NNSA: к 2020г продемонстрировать возможность достижения зажигания на NIF или понять почему это невозможно и указать условия для получения выхода термоядерной энергии более 1 МДж.


Мишень с оболочкой из алмаза в вакуумном хольрауме: N_{dt}~2·10¹⁶


Плотный аблятор, 7% - оболочка

Широкий «вакуумный» хольраум

Короткий лазерный импульс

Эффективность «вакуумного» хольраума выше, а генерация быстрых электронов в ~ 100 раз ниже