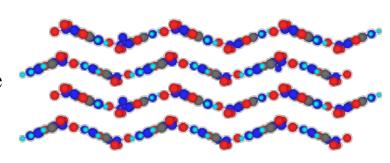
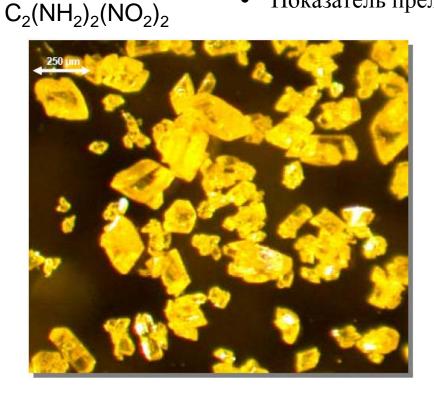
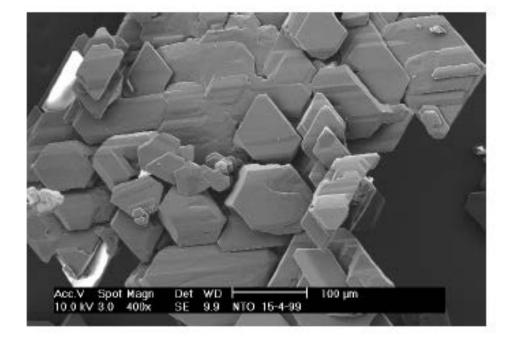

РАДИОЛЮМИНЕСЦЕНЦИЯ ПОЛИКРИСТАЛЛОВ ДАДНЭ ПОД ВОЗДЕЙСТВИЕМ ПУЧКА ЭЛЕКТРОНОВ

Лисков И.Ю.¹, Никитин А.П.¹, Ильякова Н.Н.², Адуев Б.П.¹, Зверев А.С.², Нелюбина Н.В.¹


- 1. Институт углехимии и химического материаловедения Федерального исследовательского центра угля и углехимии СО РАН, 650000, г. Кемерово, Россия
- 2. Кемеровский государственный университет, г. Кемерово, Россия


Структура и характеристики ДАДНЭ


(1,1-диамино-2,2-динитроэтилен, Апрол, DADNE, FOX-7)

- Плотность монокристалла: 1.885 g/cm³
- Температура кипения: 194,6 ± 40,0 ° C
- Температура воспламенения: 225 ° С
- Расчетная скорость детонации и давление на фронте детонационной волны 9040m/s и 36 GPa.
- Показатель преломления: 1,604

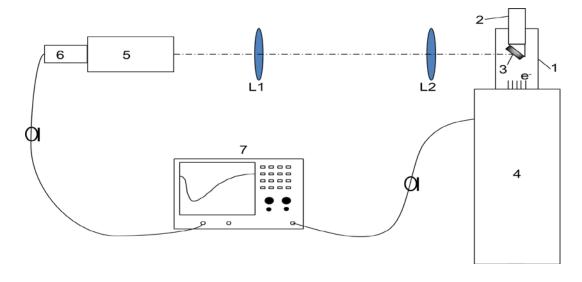
Сравнение характеристик ДАДНЭ и объекты исследования

(1,1-диамино-2,2-динитроэтилен, Апрол, DADNE, FOX-7)

	FOX-7	RDX	HMX	PETN
Температура воспламенения (°С)	215	223	250	215
Чувствительность к удару (h _{50%} , см)	126	32	28	13
Чувствительность к трению (N)	> 350	220	175	60
Скорость детонации m/s	~9040	~8360	~9124	~8590
H _{cr} J/cm ² (при инициировании электронным пучком)	19,5	~15*	-	14,5

Поликристаллы

1,1-диамино-2,2-динитроэтилен (ДАДНЭ, FOX-7) диаметр 3 mm толщина 1 mm плотность $\rho \approx 1,7$ g/cm³


^{*}P.A. Politzer, JS Murray Energetic Materials: Part 1. Decomposition, Crystal and Molecular Properties / ELSEVIER 2003, p. 466

Методика эксперимента

Параметры аппаратурного комплекса:

Источник возбуждения - ускоритель с взрывоэмиссионным катодом:

эффективная энергия электронов $0,24~{\rm MeV}$ длительность импульса до $20~{\rm ns}$ плотность энергии до $40~{\rm J/cm^2}$

Pucyнoк 1. Scheme of installation for measuring the luminescence spectra of samples.

1 - vacuum chamber; 2 - crystalholder (cryostat); 3 - sample; 4 - excitation source (electron accelerator); 5 - monochromator (DMR-4); 6 - photomultiplier (18 ELU-FM); 7 - oscilloscope; L1 and L2 - lenses.

0,24 MeV, 5 ns, 4 J/cm²

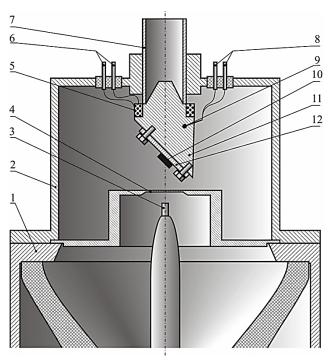
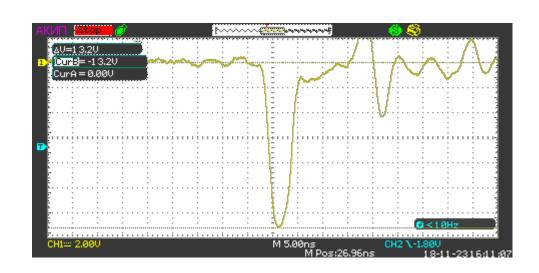
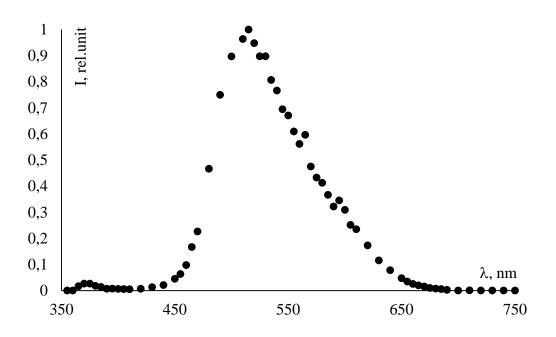




Рисунок 2. Experimental chamber for measuring the dependence of luminescence intensity on temperature: 1 — Marx generator, 2 — vacuum chamber, 3 — cathode, 4 — anode, 5 — heater, 6 — heater regulator output, 7 — cryostat cup, 8 — temperature meter output, 9 - heat exchanger, 10 - sample, 11 - thermometer, 12 - substrate.

Результаты эксперимента

Pucyнoк 3. Oscillogram of a DADNE polycrystal luminescence when impact to an electron beam

Pucyнoк 4. Radioluminescence spectrum of a DADNE polycrystals when impact to an electron beam

Результаты эксперимента

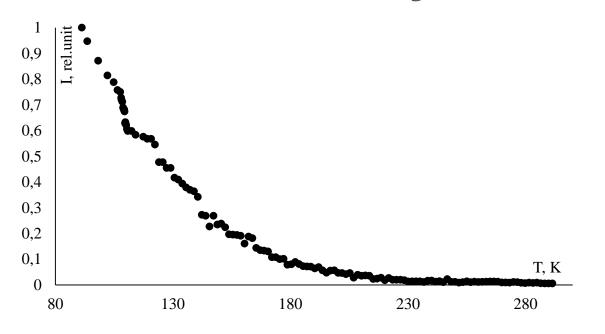


Рисунок 5. The temperature dependence of the luminescence of a DADNE polycrystal in the pre-explosive mode ($\lambda = 370$ nm).

450-650 nm - no temperature dependence. The luminescence of **NO**₂ radicals resulting from radiolysis of the samples.

370 nm - pronounced temperature dependence. Associated with the annihilation luminescence of a **free-exciton**.

450-650 Свечение диапазоне HM повторяет ПО длительности временное разрешение измерительного тракта интенсивность не зависит OT температуры. Поэтому наблюдаемое нами свечение можно NO_2 отнести свечению радикалов, образующихся В результате радиолиза образцов

Полоса свечения с максимум на длине волны $\lambda \sim 370$ нм имеет ярко выраженную температурную зависимость, что дает право предположить, что она связана с аннигиляционным свечением свободного экситона.

Спасибо за внимание