

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Calibration of k- ϵ model of turbulence for description of experiment on interaction of a hock wave with turbulent layer

M.I. Boldyrev, I.V. Glazyrin, N.A. Mikhailov

Russian Federal Nuclear Center — Zababakhin All-Russian Research Institute of Technical Physics, Snezhinsk, Russia

When shock wave passing in gas phase through boundary of two components with different density, Richtmyer--Meshkov instability occurs, which leads to intensive mixing of this components.

The process can be modeled with help of special models of turbulence, which takes into account buoyancy production term:

$$G_b = \overline{u"} \cdot \overrightarrow{\nabla p}$$

This work pursued following goals :

- 1. Adding k-ε model to existing multiphase gas dynamics model.
- 2. Simulation of experiments, that had investigated Richtmyer-Meshkov instability and calculation width of mixing zone.

Gas dynamic model

Modified system of gas dynamics equations for multiphase system, which was embodied in Focus programm*:

$$\frac{\partial \left(\overline{\rho_{m}} \cdot \alpha_{i}\right)}{\partial t} + \nabla \cdot \left(\overline{\rho_{m}} \cdot \alpha_{i} \cdot \widetilde{u_{m}}\right) = \nabla \cdot \overline{J} + \nabla \cdot J_{t}$$

$$\frac{\partial \left(\alpha_{i}\right)}{\partial t} + \nabla \cdot \left(\alpha_{i} \cdot \widetilde{u_{m}}\right) = \alpha_{i} \cdot \nabla \cdot \widetilde{u_{m}}$$

$$\frac{\partial \left(\overline{\rho_{m}} \cdot \widetilde{u_{m}}\right)}{\partial t} + \nabla \cdot \left(\overline{\rho_{m}} \cdot \widetilde{u_{m}} \otimes \widetilde{u_{m}}\right) + \overrightarrow{\nabla P_{m}} = -\overrightarrow{\nabla} \left(\frac{2}{3} \cdot \overline{\rho_{m}} \cdot k\right) + \nabla \cdot \tau_{d} + \nabla \cdot \overline{\Omega}$$

$$\frac{\partial \left(\overline{\rho_{m}} \cdot \{E_{m}\}\right)}{\partial t} + \nabla \cdot \left(\overline{\rho_{m}} \cdot \{E_{m}\} \cdot \widetilde{u_{m}}\right) + \nabla \cdot \left(P_{m} \cdot \widetilde{u_{m}}\right) = -\nabla \cdot \left(\overline{p} \cdot \overline{u^{n}} - \overline{\Omega} \cdot \overline{u^{n}}\right) + \nabla \cdot \left(\tau \cdot \widetilde{u_{m}}\right)$$

$$\frac{\partial \left(\overline{\rho_{m}} \cdot \{E_{m}\}\right)}{\partial t} + \nabla \cdot \left(\left(\overline{\lambda} + \lambda_{t}\right) \cdot \overrightarrow{\nabla T} + \frac{\mu_{t}}{\sigma} \cdot \overrightarrow{\nabla e}\right) + \nabla \cdot \left(\left(\overline{\mu} + \mu_{t}\right) \cdot \overrightarrow{\nabla k}\right) + \nabla \cdot \overline{H}$$

*Н. А. Михайлов, И. В. Глазырин, Метод укручения контактных границ для моделирования трёхмерных многофазных сжимаемых течений в эйлеровых переменных. Забабахинские научные чтения: Сборник тезисов XIII Международной конференции 20-24 марта 2017, Снежинск: Изд-во РФЯЦ-ВНИИТФ, с. 326, 2017

Turbulence model

k-ε model, proposed by J. T. Moran-Lopez and O. Schilling* for two component systems:

$$\frac{\partial \left(\overline{\rho} \cdot k\right)}{\partial t} + \nabla \cdot \left(\overline{\rho} \cdot k \cdot \tilde{\vec{u}}_{m}\right) - \nabla \cdot \left(\left(\overline{\mu} + \frac{\mu_{t}}{\sigma}\right) \cdot \nabla k\right) = \tau_{d} : \overrightarrow{\nabla \vec{u}}_{m} - \overrightarrow{u^{"}}_{m} \cdot \nabla \overline{\nabla p} + \frac{\partial \left(\overline{\rho} \cdot \varepsilon\right)}{\partial t} + \nabla \cdot \overline{\Omega} - \frac{2}{3} \cdot \overline{\rho} \cdot k \cdot \nabla \cdot \tilde{\vec{u}}_{m} - \left(1 + M_{t}^{2}\right) \cdot \overline{\rho} \cdot \varepsilon + \Pi_{k}$$
$$\frac{\partial \left(\overline{\rho} \cdot \varepsilon\right)}{\partial t} + \nabla \cdot \left(\overline{\rho} \cdot \varepsilon \cdot \tilde{\vec{u}}_{m}\right) - \nabla \cdot \left(\left(\overline{\mu} + \frac{\mu_{t}}{\sigma}\right) \cdot \nabla \varepsilon\right) = C_{1\varepsilon} \cdot \frac{\varepsilon}{k} \cdot \tau_{d} : \overrightarrow{\nabla \vec{u}}_{m} - C_{0\varepsilon} \cdot \frac{\varepsilon}{k} \cdot \overrightarrow{u^{"}}_{m} \cdot \nabla \overline{\rho} + C_{0\varepsilon} \cdot \frac{\varepsilon}{k} \cdot \overrightarrow{u^{"}}_{m} \cdot \nabla \cdot \overline{\Omega} - C_{3\varepsilon} \cdot \frac{2}{3} \cdot \overline{\rho} \cdot \varepsilon \cdot \nabla \cdot \tilde{\vec{u}}_{m} - C_{2\varepsilon} \cdot \overline{\rho} \cdot \frac{\varepsilon^{2}}{k} + C_{4\varepsilon} \cdot \frac{\varepsilon}{k} \cdot \Pi_{k}$$

*J. T. Moran-Lopez, O. Schilling, Multi-component Reynolds-averaged Navier-Stokes simulations of Richtmyer-Meshkov instability and mixing induced by reshock at different times, Shock Waves, 2014, Vol. 24(3), pp. 325-343

Division on processes

Euler's equations

First system of equations is solved:

$$\frac{\partial \left(\overline{\rho_{m}} \cdot \alpha_{i}\right)}{\partial t} + \nabla \cdot \left(\overline{\rho_{m}} \cdot \alpha_{i} \cdot \overline{\widetilde{u}_{m}}\right) = 0$$
$$\frac{\partial \left(\alpha_{i}\right)}{\partial t} + \nabla \cdot \left(\alpha_{i} \cdot \overline{\widetilde{u}_{m}}\right) = 0$$
$$\partial \left(\overline{\rho_{m}} \cdot \overline{\widetilde{u}_{m}}\right) = 0$$

$$\frac{\partial \left(\overline{\rho_{m}} \cdot u_{m}\right)}{\partial t} + \nabla \cdot \left(\overline{\rho_{m}} \cdot \overline{\tilde{u}_{m}} \otimes \overline{\tilde{u}_{m}}\right) + \overline{\nabla}\overline{P}_{m} = -\overline{\nabla}\left(\frac{2}{3} \cdot \overline{\rho_{m}} \cdot k\right)$$

$$\frac{\partial \left(\overline{\rho_{m}} \cdot E_{m}\right)}{\partial t} + \nabla \cdot \left(\overline{\rho_{m}} \cdot E_{m} \cdot \overline{\tilde{u}_{m}}\right) + \nabla \cdot \left(\overline{P}_{m} \cdot \overline{\tilde{u}_{m}}\right) = -\nabla \cdot \left(\frac{2}{3} \cdot \overline{\rho_{m}} \cdot k \cdot \overline{\tilde{u}_{m}}\right)$$

$$\frac{\partial \left(\overline{\rho_{m}} \cdot k\right)}{\partial t} + \nabla \cdot \left(\overline{\rho_{m}} \cdot k \cdot \overline{\tilde{u}_{m}}\right) = 0$$

$$\frac{\partial \left(\overline{\rho_{m}} \cdot \varepsilon\right)}{\partial t} + \nabla \cdot \left(\overline{\rho_{m}} \cdot \varepsilon \cdot \overline{\tilde{u}_{m}}\right) = 0$$

Making assumption about equal compressibility of phases, volum fraction is corrected:

$$\alpha_i = \frac{\alpha_i^*}{\sum_j \alpha_j^*}$$

 α_i^* - volume fraction from Euler's equations

ODE for sources of k and ε

After that equation for k and ε are sold. Only sources are taking into account:

$$\frac{\partial \left(\overline{\rho} \cdot k\right)}{\partial t} = \tau_{d} : \overrightarrow{\nabla u}_{m} - \overrightarrow{u}_{m} \cdot \overrightarrow{\nabla p} + \overrightarrow{u}_{m} \cdot \nabla \cdot \overrightarrow{\Omega} - \frac{2}{3} \cdot \rho \cdot k \cdot \nabla \cdot \overrightarrow{u}_{m} - \left(1 + M_{t}^{2}\right) \cdot \rho \cdot \varepsilon + \Pi_{k}$$
$$\overline{\rho} \cdot \varepsilon = C_{1\varepsilon} \cdot \frac{\varepsilon}{k} \cdot \tau_{d} : \overrightarrow{\nabla u}_{m} - C_{0\varepsilon} \cdot \frac{\varepsilon}{k} \cdot \overrightarrow{u}_{m} \cdot \overrightarrow{\nabla p} + C_{0\varepsilon} \cdot \frac{\varepsilon}{k} \cdot \overrightarrow{u}_{m} \cdot \nabla \cdot \overrightarrow{\Omega} - C_{3\varepsilon} \cdot \frac{2}{3} \cdot \rho \cdot \varepsilon \cdot \nabla \cdot \overrightarrow{u}_{m} - C_{2\varepsilon} \cdot \rho \cdot \frac{\varepsilon^{2}}{k} + C_{4\varepsilon} \cdot \frac{\varepsilon}{k} \cdot \Pi_{k}$$

Other flows

Other are diffusion equations:

$$\frac{\partial \left(\overline{\rho_{m}} \cdot k\right)}{\partial t} = \nabla \cdot \left(\left(\overline{\mu} + \frac{\mu_{t}}{\sigma}\right) \cdot \overline{\nabla}k\right)$$
$$\frac{\partial \left(\overline{\rho_{m}} \cdot \varepsilon\right)}{\partial t} = \nabla \cdot \left(\left(\overline{\mu} + \frac{\mu_{t}}{\sigma}\right) \cdot \overline{\nabla}\varepsilon\right)$$
$$\frac{\partial \left(\overline{\rho_{m}} \cdot \overline{u_{m}}\right)}{\partial t} = \nabla \cdot \left(\tau_{d} + \overline{\Omega}\right)$$
$$\frac{\partial \left(\overline{\rho_{m}} \cdot \overline{u_{m}}\right)}{\partial t} = -\nabla \cdot \left(\overline{p} \cdot \overline{u^{"}}_{m} - \overline{\Omega} \cdot \overline{u^{"}}_{m}\right) + \nabla \cdot \left(\tau_{d} \cdot \overline{u}_{m}\right) + \nabla \cdot \left(\overline{\Omega} \cdot \overline{u}_{m}\right) + \nabla \cdot \overline{H}$$
$$\frac{\partial \left(\overline{\rho_{m}} \cdot \overline{e}_{m}\right)}{\partial t} = \nabla \cdot \left(\frac{\mu_{t}}{\sigma} \cdot \overline{\nabla}\overline{e}\right)$$
$$\frac{\partial \overline{e}_{m}}{\partial T} \cdot \frac{\partial \overline{T}}{\partial t} = \nabla \cdot \left(\left(\overline{\lambda} + \lambda_{t}\right) \cdot \overline{\nabla}\overline{T}\right)$$
$$\frac{\partial \left(\overline{\rho_{m}} \cdot \omega_{t}\right)}{\partial t} = \nabla \cdot \left(\overline{J} + \overline{J}_{t}\right)$$

Closure model

$$\mu_{i} = C_{\mu} \cdot \overline{\rho_{m}} \cdot \frac{k^{2}}{\varepsilon}; \lambda_{i} = C_{p} \cdot \frac{\mu_{i}}{\sigma}$$

$$\tau = -\frac{2}{3} \cdot \overline{\rho_{m}} \cdot k + \tau_{d}$$

$$\tau_{d} = \mu_{i} \cdot \left(\vec{\nabla} \vec{u} + \vec{\nabla} \vec{u}^{T} - \frac{2}{3} \cdot \nabla \cdot \vec{u} \cdot I \right)$$

$$M_{i}^{2} = \frac{2 \cdot k}{a^{2}}$$

$$\overline{J_{i}} + J_{i}^{i} = \left(\overline{\rho_{m}} \cdot \frac{6}{5} \cdot \overline{v_{i}} + \frac{\mu_{i}}{\sigma} \right) \cdot \vec{\nabla} \omega_{i}$$

$$\overline{H} = \sum_{i} \overline{h_{i}} \cdot \left(\overline{J_{i}} + J_{i}^{i} \right)$$

$$\overline{h_{i}} \approx \overline{e_{i}}^{\alpha} + \frac{\{\alpha_{i}\} \cdot \overline{p}}{\{\omega\}_{i} \cdot \{\rho\}}$$

Closure model

Velocity fluctuation approximation:

$$\overline{u''} = \frac{\mu_t}{\overline{\rho} \cdot \sigma_{\rho}} \cdot \left(\frac{\nabla \overline{\rho}}{\overline{\rho}} - \frac{\nabla \overline{p}}{\overline{p}}\right)$$

Pressure-dilation correlation:

$$\Pi_{k} = \overline{p' \cdot \nabla \cdot \vec{u'}} = M_{t}^{2} \cdot \left(-\alpha_{2} \cdot \left(\tau : \vec{\nabla u} - \frac{2}{3} \cdot \vec{\rho} \cdot k \cdot \nabla \vec{u} \right) + \alpha_{3} \cdot \vec{\rho} \cdot \varepsilon \right)$$

Constants:

$$\begin{split} C_{\mu} &= 0.09; \ \sigma = 0.5; \ \sigma_{\rho} = 0.76; \ C_{0\varepsilon} = 0.84; \\ C_{1\varepsilon} &= 1.44; \ C_{2\varepsilon} = 1.92; \ C_{3\varepsilon} = 2.; \ C_{4\varepsilon} = 1.1 \\ \alpha_{2} &= 0.4; \ \alpha_{3} = 0.2. \end{split}$$

Connection between mass and volume fraction

Advection equations are solved in volume fractions:

$$\frac{\partial \left(\rho_{m} \cdot \alpha_{i}\right)}{\partial t} + \nabla \cdot \left(\rho_{m} \cdot \alpha_{i} \cdot \overrightarrow{u_{m}}\right) = 0; \quad \frac{\partial \left(\alpha_{i}\right)}{\partial t} + \nabla \cdot \left(\alpha_{i} \cdot \overrightarrow{u_{m}}\right) = \alpha_{i} \cdot \nabla \cdot \overrightarrow{u_{m}}$$

Diffusion equations — in mass fractions:

$$\frac{\partial \left(\overline{\rho_m} \cdot \omega_i\right)}{\partial t} = \nabla \cdot \left(\overline{\rho_m} \cdot \frac{6}{5} \cdot \overline{\nu}_i + \frac{\mu_i}{\sigma}\right) \cdot \overline{\nabla} \omega_i$$

After third stage only average pressure and temperature per cell:

$$\rho_i^{\alpha} = f\left(p_m^*, T_m^*\right)$$

Then volume fraction on new time layer :

$$\alpha_i = \frac{\rho_i^{\alpha}}{\rho_m \cdot \omega_i}$$

After that pressure of the mixture and temperatures of phases are recalculated.

Comparisions were made with experiment of E. Leinov and oth.*

*E. Leinov, G. Malamud, Y. Elbaz, L. A. Levin, G. Ben-Dor, D. Shvarts, O. Sadot, Experimental and numerical investigation of the Richtmeyer-Meshkov instability under re-shock conditions, J. Fluid Mech., 2009, Vol. 626, pp. 449-475

One dimensional simulations were carried out for four variants of experiment. Initial conditions:

•Pressure – 23 kPa.

•Temperature – 294 K.

•Density of air and sulfur hexafluoride – 0.2729 kg/m³ and 1.3738 kg/m³ correspondingly.

•Distance to wall 9.8, 13.2, 17.7 и 19.9 cm.

•Gases were taken as ideal with isochoric heat capacity:

$$C_V^{air} = 717.1 \ Дж/кГ$$

 $C_V^{SF_6} = 605.6 \ Дж/кГ$

•Properties after the shock wave corresponded 1.2 Mach:

$$\overline{\rho}_0 = 0.366 \text{ кг/м}^3$$

 $\overline{p}_0 = 34806 \text{ Па}$
 \vec{z}
 $u_0 = (104.96; 0; 0) \text{ м/с}$

Initial *k* and ε were taken constan according to the equations:

$$k_{0} = K^{0} \cdot \left(\tilde{\vec{u}}_{0} \cdot At\right)^{2} = 495 \text{ m}^{2}/\text{c}^{2}$$

$$\varepsilon_{0} = k_{0} \cdot \frac{2 \cdot \pi}{\lambda_{rms}} \cdot |At| \cdot \Delta \tilde{\vec{u}} = 5.83 \cdot 10^{7} \text{ m}^{2}/\text{c}^{3}$$

$$At = \frac{\rho_{SF_{0}} - \rho_{a}}{\rho_{SF_{0}} + \rho_{a}} = 0.67; \ \Delta \tilde{\vec{u}} = (69.5; 0; 0)$$

$$\lambda_{rms} = 0.0025 \text{ m}; K^{0} = 0.1$$

 λ_{rms} – parameter about mean length of initial preturbation, Δu – change of velocity due to passing of shock wave.

$$\tau_d = 0$$

$$\delta = l_{x=0.01}^a - l_{x=0.99}^a$$

Mixing zone width has been defined as distance between points, where molar fraction of air was 1% and 99%.

Example of volume fraction profile:

Experiment with distance to wall 9.8 cm:

Experiment with distance to wall 13.2 cm:

Experiment with distance to wall 17.7 cm:

Experiment with distance to wall 19.9 cm:

Experiment with different distance to wall, 75000 cells:

Κ-ε model of turbulence was realised and parametrisation proposed.

With help of this model one dimensional simulations of Richtmyer-Meshkov instability with 1. Mach were conducted.

Model demonstrates good agreement with experiment achieved on width of mixing zone before reshocked wave. After reshocked wave agreement is satisfactory.

Thank you for attention!

Numerical scheme

Time derivative approximation – Euler's scheme:

$$\frac{\overline{\rho}^{j} \cdot y^{j+1} - \overline{\rho}^{j} \cdot y^{j}}{\Delta t}$$

Divegence and gradient approximation – Gauss theorem:

$$\nabla \varphi_i = \frac{1}{V_i} \cdot \int_{S} \varphi \cdot \vec{n} \cdot dS = \frac{1}{V} \cdot \sum_{j} \int_{S} \varphi \cdot \vec{n_j} \cdot dS_j = \frac{1}{V} \cdot \sum_{j} \varphi_j^c \cdot S_j \cdot \vec{n_j}$$

Approximation of quantities on surface centrea - linear:

$$\varphi_j^c = \sigma_j \cdot \varphi_P + (1 - \sigma_j) \cdot \varphi_N$$
$$\sigma_j = \frac{\overrightarrow{n_j} \cdot \overrightarrow{d_P}}{\overrightarrow{n_j} \cdot (\overrightarrow{d_P} + \overrightarrow{d_N})}$$

