

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Физические модели детонации гетерогенных кристаллических ВВ

Гребёнкин К.Ф. РФЯЦ-ВНИИТФ

Введение

- Существует множество моделей детонации, которые, по замечанию Р.Шере, «находятся в состоянии холодной войны друг с другом», т.е. развиваются независимо.
- Практически все современные модели детонации пластифицированных кристаллических ВВ основаны на концепции «горячих точек», различаясь лишь ее трактовкой.
- В докладе представлен обзор работ, которые выполнялись с 1998г. в рамках одной из моделей («Урало-сибирская модель» УСМ).

Чаша Грааля теории детонации - фундаментальный вопрос о связи молекулярной структуры и детонационных свойств BB

- Несмотря на многолетнюю предысторию изучения и практического применения детонации конденсированных BB, до сих пор о микрофизике детонационных процессов мало что известно («Mystery of Detonation» - Simpson e.a., LLNL).
- Зато хорошо известно, что детонационные свойства определяются не только структурой молекул, но и мезоструктурой ВВ, и одно и то же химическое соединение имеет разные свойства в разных физических состояниях:
 - ✓ монокристаллическом,
 - ✓ литом,
 - ✓ мелкокристаллическом насыпном,
 - ✓ мелкокристаллическом прессованном,
 - ✓ мелкокристаллическом пластифицированном.
- По мнению Б.Г. Лобойко (высказанному в начале 90-х годов прошлого века): «Если удастся хоть что-то понять о связи микроструктуры ВВ и его детонационных характеристик, то это будет большим достижением».

Б.Г. Лобойко

1937 - 2018

Борис Григорьевич Лобойко

Видный учёный, физик-экспериментатор. Основные направления работ:

- создание взрывчатых материалов,
- исследования в области физики, техники, технологии и безопасности взрывчатых веществ.

Доктор технических наук, профессор, Заслуженный деятель науки РФ, лауреат Государственных премий СССР и РФ.

Постоянный участник ЗНЧ, основатель и первый руководитель секции 2 «Взрывные и детонационные явления».

Из личных впечатлений – удивительная способность ставить фундаментальные задачи в форме «простых» вопросов:

- 1. Почему некоторые вещества являются взрывчатыми веществами (почему BB взрываются) ?
- 2. Почему ТАТБ обладает аномально низкой чувствительностью ?
- 3. Почему скорость химических реакций определяется температурой (закон Аррениуса), а эффективная (макрокинетическая) скорость реакции в кинетических моделях детонации обычно задается в виде функции давления ?
- 4. Как рассчитать макрокинетическую скорость реакций из первых принципов ?
- 5.

Ключевая идея - иерархия масштабов детонационных процессов

МИКРО

Размеры молекул Время хим. реакции.

ME30

Размеры микрокристаллов. Время их горения после действия УВ. МАКРО Размеры заряда ВВ. Время взрыва

10¹⁰

Огромная разница пространственно-временных масштабов этих трех уровней влечет за собой необходимость декомпозиции проблемы, когда каждый уровень исследуется по отдельности, и полученные результаты используются при построении моделей более 5 высокого уровня.

Макроуровень – макрокинетика химических реакций и уравнение состояния

$$\frac{d\rho}{dt} + \rho \cdot \nabla \vec{u} = 0$$
$$\frac{d\vec{u}}{dt} = -\frac{1}{\rho} \nabla P$$
$$dt = -\frac{1}{\rho} (1)$$

$$\frac{d\varepsilon}{dt} + P\frac{d}{dt}\left(\frac{1}{\rho}\right) = Q$$

- Q энерговыделение в химических реакциях. Обычно принимают, что $Q = -q_0 \cdot d\xi/dt$, где q_0 калорийность BB,
 - ξ концентрация BB.
- *P*(ρ,ε) уравнение состояния реагирующей среды.
- Информация с микро и мезо уровней поступает на макроуровень <u>только</u> через $\xi(t)$ и $P(\rho, \varepsilon)$.

Мезоуровень – концепция «горячих точек»

Кстати – монокристаллический ТАТБ, по-видимому, не является взрывчатым веществом – стационарная детонация в нем невозможна

- Критическое давление инициирования детонации гексогена:
 - > 30 ГПа для монокристалла,
 - ✓ З ГПа для прессованных мелкокристаллических образцов.
- Структура образцов ВВ, сохраненных после действия УВ.
- Вывод в гетерогенных ВВ реакция начинается в микроочагах – «горячих точках» (ГТ), и волны горения распространяются в основной объем ВВ.
- Это подтверждают и расчеты схлопывания пор в ВВ после прохождения УВ.

Температура ВВ после прохождения УВ через полость

300 2214 4128 ✓ Опубликовано множество расчетов схлопывания пор под действием УВ, начиная с классической работы Ч. Мейдера.

- ✓ Общий вывод гидродинамический механизм инициирования ГТ доминирует при высоких давлениях Р ≥ 10 ГПа. При этом:
 - ✓ Объем «горячих точек» << объема непрореагировавшего ВВ, сжатого УВ.
 - ✓ Время реакции в горячих точках << времени распространения волны горения.

до их взаимодействия - смыкания волн горения

Три фактора УСМ, определяющие макрокинетику

$$-\frac{d\xi}{dt} = F \cdot N^{1/3} \cdot D$$

🕨 ξ - концентрация ВВ,

≻ F – геометрический фактор (переход от «горения наружу» к «смыканию волн горения»),

N – концентрация очагов реакции
 (N^{-1/3} - среднее расстояние между ними),

D – скорость распространения волны горения из горячих точек.

- горячие точки, случайно распределенные по объему ВВ.
 вы торошко – отношко массы.
- выгорание = отношение массы ПВ к полной массе (ВВ + ПВ).

Подход - рассчитать эти три фактора, имеющие ясный физический смысл, исходя из микро и мезоструктуры ВВ, т.е. из первых принципов.

Оценка геометрического фактора

Распространение горения из микроочагов, случайно распределенных по пространству. Модельная (чисто геометрическая) задача: D=const, ρ=const.

Плотность горячих точек можно вычислить на основе исходного распределения пор по размерам (ФГВ, 2009, № 1)

(T.M. Wiley, T.Van Buuren e.a. 2006).

РФЯЦ-ВНИИТФ

Зависимость температуры зажигания от размера микроочага (С.М. Tarver, 1996).

Из расчета прохождения УВ через пору можно получить размер, температуру ГТ и их плотность (зависят от Р на Фронте, начального размера и начальной плотности пор). Оценка – Тгт \approx T₀ + b*P_f, b = 150 – 250. $x \approx k^* x_0$, k = 0.1 $N(P_f) \sim \int_{d_{cr}(T_{rr})}^{\infty} \psi(x) \cdot dx$ (Ю.А. Аминов, Ю.Р. Никитенко, 2002)

- 1. При Р_f ≥ 10 ГПа насыщение и быстрое зажигание ГТ, кинетику разложения определяет только рост ГТ.
- 2. При $P_f \le 5$ ГПа негидродинамический механизм.

Скорость распространения волны горения определяющий фактор макрокинетики детонации <u>ПСТ</u>

- Парадокс В.Г. Морозова
- ✓ Макрокинетическое время реакции это время смыкания волн горения, распространяющихся из соседних ГТ: Δτ ≈ δ/D, где δ–половина среднего расстояния между соседними горячими точками. При δ ≈ 10 100 мкм (порядка размера микрокристаллов BB) и времени инициирования детонации Δτ ≈ 0.1÷1мкс получим оценку D ~ 100 м/с.

РФЯЦ-ВНИИТФ

- ✓ По расчетам К. Тарвера (11th Det. Symp., 1998г) в ТАТБ
 D ≈ 0.5 1 м/с.
- Расчетная скорость волны горения на 2 порядка меньше, чем дают оценки по результатам детонационных экспериментов !
- Предложение В.Г. Морозова турбулентный механизм передачи энергии в волне горения (более интенсивный, чем теплопроводность).

Альтернативное предложение (ЗНЧ, 1998г.) разц-вниито

- **Гипотеза** («полупроводниковая модель детонации»):
 - ✓ передача энергии в волне горения происходит путем электронной теплопроводности.
 - ✓ сжатый и нагретый ударной волной ТАТБ становится полупроводником, т.е. в зоне проводимости создается достаточно высокая концентрация электронов.
- Как это проверить ?
 - ✓ Компьютерное моделирование электронной (зонной) структуры молекулярных кристаллов ВВ.
 - ✓ Индикатор электронной теплопроводности электропроводность, обе «-проводности» пропорциональны концентрации электронов в зоне проводимости (закон Видемана-Франца).
 - ✓ Измерение электропроводности ВВ после прохождения УВ (например, было обнаружено, что «ударная волна превращает монокристаллический гексоген в полупроводник» при Р=12.5 ГПа, G.P.Chambers e.a., SCCM, 2001).

УВ переводит гексоген в полупроводниковое состояние, возможно, такой же эффект имеет место и в ТАТБ.

Постановка измерений электропроводности ударно сжатого ТАТБ

РФЯЦ-ВНИИТФ

М.М. Горшков, К.Ф. Гребенкин, В. Т. Заикин и др. . Proc. 13th Int. Det. Symp. 2006

Особенности постановки эксперимента:

- 1. Малая толщина образца 0.75 мм.
- 2. Ударные адиабаты буферной среды и исследуемого ВВ близки. (гидродинамическая однородность). Объем буферной среды намного больше, чем объем образца.
- 3. Нагруженгие ступенчатым импульсом Поддерживается постоянное давление в течение 1 1.5 мкс (даже, если протекают реакции и выделяется энергия).

Результаты измерений электропроводности ударно сжатого ТАТБ (ρ₀ = 1.865 г/см³)

РФЯЦ-ВНИИТФ

Интерпретация результатов измерений электропроводности ударно сжатого ТАТБ

- УВ с давлением на фронте Р ≈ 10 ГПа превращает ТАТБ в полупроводник с удельной электропроводностью порядка 1/(Ом*м), что близко к электропроводности такого полупроводника, как германий (при НУ).
- Что наблюдалось в опытах проводимость непрореагировавшего кристаллического ВВ или же проводимость продуктов взрыва, образовавшихся при частичном разложении ВВ ?
- Аргументы в поддержку того, что наблюдалась проводимость ударно сжатого непрореагировавшего кристаллического ТАТБ:
 - ✓ Начальный объем ГТ мал, и волны горения смыкаются лишь на конечной стадии процесса (начальная пористость ~ 4%, размер ГТ на порядок меньше начального размера пор, поэтому начальная объемная доля ГТ ~ 4*10⁻³ %),
 - ✓ Измеренная электропроводность на 2 порядка меньше, чем у ПВ.
 - ✓ Наличие второго пика при 15 ГПа может быть результатом смены режимов, когда волны горения смыкаются и проводимость растет даже в условиях разгрузки. Аналогичный эффект наблюдался при 17.3ГПа

Изменение скорости роста удельной электропроводности при 17.3 ГПа

А – момент входа УВ в образец,
В – момент выхода УВ из образца,
С – момент изменения скорости
роста электропроводности, когда,
предположительно, определяющий
вклад дают ПВ

- Желательно провести эксперименты с монокристаллическими образцами. Проблема - нет технологии изготовления образцов с нужной геометрией.
- Чему равна ширина запрещенной зоны молекулярного кристалла ТАТБ. По нашим оценкам (ЗНЧ и ПЖТФ, 1998г.) ожидалось ≈ 2.0 эв.

Оценки ширины запрещенной зоны

кристалла ТАТБ

Авторы	Дата	Е _g , эв	Комментарий
Kunz	PhR, 1996	≈11 (ну)	Расчет по методу НF
Гребенкин	ПЖТФ, 1998	pprox 2 (10 - 20ГПа)	Оценка по результатам детонационных экспериментов
Kakar e.a.	PhR, 2000	6.6 (ну)	Эксперимент. Косвенный метод с использованием расчетных данных
Гребенкин <i>,</i> Кутепов	ФТП <i>,</i> 2000	2 - 4 (ну) 1.5-2.0 (10-20ГПа)	Оценка: Расчет DFT с поправкой на систематическую недооценку E _g . Вывод – не 11 и не 7, а << .
Wu	PhRB, 2003	2.4 (ну) 1.5 (15 ГПа)	Расчет DFT
Manaa	APL, 2003	2.5 (ну)	Расчет DFT
Гребенкин и др.	знч, 2003	1.5 — 2.0 (10 - 15 ГПа)	Оценка по результатам измерения электропроводности за ФУВ
Liu e.a.	PLA, 2006	2.6 (ну)	Расчет DFT
Weihua Zhu	JMS, 2009	2.4 (ну)	Расчет DFT

Оценки ширины запрещенной зоны кристалла ТАТБ (продолжение)

	Авторы	Дата	Е _g , эв	Комментарий		
	Федоров, Журавлев	ChPh, 2014	2.24 (ну) 4.45 (ну)	Расчет DFT Расчет G ₀ V ₀		
	Appalakon- daiah e.a.	JPhCh, 2015	2.51 (ну) 4.66 (ну)	Расчет DFT Расчет G ₀ V ₀		
2.6	Yan Su e.a.	Chin. Ph. B, 2018	2.36 — 2.60 (ну) 1.77-1.97 (20ГПа)	Расчет DFT (разные варианты)		
	Han Qin e.a.	Ph. B CM <i>,</i> 2019	2.37 (ну) 1.86 (15 ГПа)	Расчет DFT		
2.4 - ())))))))))))))		те (GPa) отлощения ТАТБ	 Согласно измерен при Р ≈ 10 - 15 ГГ Почему расчеты І экспериментом, а веществ ? Почему согласуется с резу При этом результа моделям одного к и 4.5 эв), что гово 	Согласно измерениям спектра поглощения (2018г.) при Р ≈ 10 - 15 ГПа у ТАТБ $E_g \approx 2.0$ эв. Почему расчеты DFT хорошо согласуются с экспериментом, а не занижают E_g , как для других веществ ? Почему более точная модель G_0V_0 не согласуется с результатами экспериментов ? При этом результаты расчетов разных авторов по моделям одного класса, хорошо согласуются (2.5эв и 4.5 эв), что говорит об их корректности (в рамках		
Xia	oyu Sun e.a. J. P	h. Chem., 2018	принятого приоли	принятого приолижения).		

Превращает ли УВ ТАТБ в полупроводник, и по какому механизму происходит передача энергии в волне горения ?

- Гипотеза подтвердилась да превращает !
 - ✓ Измерения электропроводности ударно сжатого ТАТБ показали, что она примерно такая же, как у германия (при ну).
 - ✓ Расчеты и измерения ширины запрещенной зоны дают

 $E_g = 2$ - 3 эв, и она уменьшается при повышении давления.

- ✓ Увеличение концентрации электронов в зоне проводимости после прохождения УВ происходит в результате нагрева ВВ (основной эффект) и сжатия (уменьшение ширины запрещенной зоны).
- Вопрос о ведущем механизме теплопроводности при горении микроочагов (фононная или электронная теплопроводность, или обе) остается открытым, необходимы дальнейшие исследования.

Скорость волны горения в среде с нелинейной (электронной) теплопроводностью

- *χ* и τ коэффициент температуропроводности и время реакции <u>при температуре</u>
 . близкой к температуре ПВ. (Кришеник, Шкадинский, ДАН, 2003).
- ✓ Макрокинетическая скорость реакций в ТАТБ (и, следовательно pop-plot и другие детонационные эффекты) определяется температурой ПВ !? 22

РФЯЦ-ВНИИТФ

Возвращаясь к парадоксу В.Г. Морозова

- Чтобы оценить скорость волны горения нужно оценить значения двух параметров, χ и τ, при температуре порядка Т_{ПВ} в ГТ.
- Оценки времени реакции были получены нами в МД-расчетах в 2001г. (ЖТФ, 2001г.):
 - ✓ для ТАТБ ~ 30 пс,
 - ✓ для октогена ~ 1 пс,
- Эти оценки впоследствии были подтверждены в независимых расчетах других авторов и для октогена (Manaa e.a., 2002г.) и для ТАТБ (Manaa e.a., 2010г.).
- Если предположить, что передача энергии в волне горения идет по фононному механизму (χ ~ 10⁻⁷ м²/c), то получим оценку скорости волны горения ~ 300 м/с для октогена и ~ 60 м/с для ТАТБ. То, что надо !
- Возможное объяснение парадокса уточнение времени реакции, а не механизма передачи энергии. В расчетах скорости волн горения использовалась модель кинетики горения, полученная из опытов по зажиганию ВВ при низких температурах и больших временах зажигания (≥1сек), неприменимая при малых временах реакции. На пикосекундных временах хорошо работает МД.

Почему ТАТБ такой низкочувствительный ?

- Подробное обсуждение см. в нашей статье в ФГВ, 2009, № 1.
- Внешнее воздействие на ВВ характеризуется двумя основными параметрами:
 - 1. *Р_f* давление на фронте первой УВ, определяющее плотность очагов,
 - 2. $T_{\Pi B}$ температура ПВ в очагах реакции, определяющая скорость волны горения.
- Давление УВ-инициирования детонации пластифицированного ТАТБ ≥10ГПа, плотность ГТ выходит на насыщение, и ГТ зажигаются практически мгновенно.
- Главный (фактически единственный) фактор кинетики детонации ПСТ это скорость волны горения, которая определяется температурой ПВ в «горячих точках».

$$D \sim \sqrt{\frac{\chi(T_{\Pi B})}{\tau(T_{\Pi B})}} \sim \exp\left(-\frac{T_{ef}}{T_{\Pi B}}\right) \qquad T_{ef} = \frac{E_g}{4} + \frac{E_a}{2}$$

Е_а - энергия активации хим. реакций (энергия связи нитрогруппы) ~ 60 ккал/моль – ТАТБ ~ 40 кал/моль – HMX, RDX

- Для ТАТБ $E_g \approx 40$ ккал/моль и основной вклад в T_{ef} дает второе слагаемое.
- ТАТБ такой низкочувствительный потому, что у него аномально низкая температура ПВ, ~2000К, в ~ 2 раза меньше, чем у обычных ВВ, и его молекула более прочная.

Как работает макрокинетика, основанная на температуре ПВ (ФГВ, 2009, № 1) ?

- Итак, макрокинетическая скорость разложения ТАТБ зависит от $T_{\Pi B}$: ~ $exp(F(T_{\Pi B}))$, где $F = -T_{ef}/T_{\Pi B}$
- **Вопрос**: «Как отсюда получить связь скорости реакций с интенсивностью инициирующего воздействия, т.е. с давлением» ?
- Ответ (неожиданный): «После прохождения УВ «эффективная калорийность ВВ» возрастает, т.к. УВ «приносит» в среду дополнительную энергию. В результате температура ПВ в очагах реакции зависит от интенсивности инициирующей УВ чем сильнее УВ, тем выше температура ПВ в очагах».
- С помощью уравнений состояния ВВ и ПВ можно рассчитать $T_{\Pi B}(P)$ и представить $F(T_{\Pi B})$ как $F(T_{\Pi B}) \approx T_1 + \alpha \cdot P$. (T_1 и α вычисляемые константы).
- Линейное приближение применимо, поскольку повышение $T_{\Pi B}$ за счет добавочной энергии от УВ невелико. Тем не менее, из-за того, что $T_{ef} >> T_{\Pi B}$, скорость реакции зависит от давления достаточно сильно.
- В итоге приходим к привычной зависимости скорости реакций от давления ~ *exp(α·P)*, в свою очередь, ее можно аппроксимировать еще более привычной зависимостью ~ *P^m*.

$$-\frac{d\xi}{dt} = F\left(\xi\right) \cdot N^{1/3}\left(P_{f}\right) \cdot D\left(P\right) = Z \cdot \xi \cdot \left(1 - \xi\right)^{2/3} \cdot exp\left(\alpha \cdot P\right)$$

- *F*(*ξ*) получается из решения модельной задачи *F*(*ξ*) ≈ 4.5 · *ξ* · (1 *ξ*)^{2/3} *N*^{1/3}(*P_f*) = const при *P_f*≥ 10 ГПа. *D*(*P*) ~ exp(α·*P*), где α ≈ ^{T_{ef}}/_{T²} · ¹/_{C_{EP}/2} · ^{dE_f}/_{D_f} получается из приближенного решения задачи о скорости распространения волны горения.
 - Оценки дают значение $\alpha = 0.2 0.3 1/\Gamma\Pi a$ (ФГВ, №1, 2009),
 - Подбор по результатам моделирования детонационных экспериментов дает значение $\alpha = 0.32$ 1/ГПа (ХНЧ, 2007).

Полуэмпирическая модель - моделируемые процессы анализируются на микроуровне, и на этой основе строятся физически обоснованные, хотя и приближенные, зависимости трех сомножителей от параметров среды. Затем, по результатам детонационных экспериментов, производится корректировка констант Z и α (их всего лишь 2 !).

Особенность детонации ВВ с отрицательным кислородным балансом

- При детонации ВВ с отрицательным кислородным балансом идет экзотермический процесс - рост УДА.
- Калорийность ВВ зависит от степени завершенности этого процесса, т.е. от среднего размера УДА (см. рис.).
- ПВ ТАТБ содержат аномально высокое количество углерода, и его калорийность определяется вкладом от конденсации УДА.

В ПВ за пределами ЗХР происходит медленное длительное выделение энергии, и модель детонации должна это учитывать Экспериментальное подтверждение роста УДА и медленного энерговыделения за пределами ЗХР

- Малоугловое рассеяние синхротронного излучения в ПВ (Титов и др., 2001 +).
- Стадия медленного роста электропроводности ПВ ПСТ (ФГВ, 2007, № 1). Р=34 и 27 ГПа.
- Расщепление кривых затухания УВ в преграде, контактирующей с детонирующих ВС «Сотр. В» (Bdzil, 1975) и ПСТ (Лобойко и др., 2005). «Давление детонации зависит от размера заряда».

Объединенная модель детонации ПСТ

- Быстрая разрушение исходных молекул ВВ, формирование устойчивых двух-, трехатомных молекул ПВ и небольших углеродных кластеров (10-100 атомов с размером меньшим или порядка 1 нм). Характерное время этого процесса ~ 10 нс в стационарных режимах детонации.
- 2. Медленная остаточное энерговыделение в ПВ, происходящее за счет процесса роста углеродных кластеров. Характерное время ~ 1 мкс.

$$E(t) = E_f(t) + E_s(t)$$

РФЯЦ-ВНИИТФ

$$E_f(t) = q_0 \cdot \alpha \cdot \left[1 - \xi(t)\right]$$

Выбор значений констант медленной кинетики

$$E_{s}(t) = q_{0} \cdot [1 - \xi(t)] \cdot (1 - \alpha) \cdot [1 - f(t)]$$

q_0 – полная калорийность BB, α – ее доля,
соответствующая фазе превращения BB в ПВ

- 1. Степенная зависимость от времени с п≈3 соответствует теоретической модели (Show, Johnson, 1987)
- Будем полагать, что образование УДА размером ~ 1 нм (~ 100 атомов) является частью быстрой фазы кинетики ВВ→ПВ (образуются за те же характерные времена, что и конечные газовые компоненты), тогда по расчетной зависимости Q(d_{уДА}) можно оценить долю энерговыделения в быстрой фазе α.
- 3. Параметр τ_s можно оценить с опорой на опыты по изучению динамики роста наночастиц конденсированного углерода с помощью синхротронного излучения.

$$\left. \begin{array}{c} Q^{PACY}\left(d_{y\mathcal{A}A}\right) \\ Q^{PACY}\left(t\right) \end{array} \right\} \Rightarrow d_{y\mathcal{A}A}^{PACY}\left(t\right) \iff d_{y\mathcal{A}A}^{\mathcal{HC\Pi}}\left(t\right)$$

f, nm

Сравнение расчетной зависимости d(t) (Жеребцов и др, 2015) с экспериментальной (Титов и др., 2011)

Модель слабонеидеальной детонации

- В условиях, когда реализуется сильное инициирование и размеры системы много больше критических, применима модель слабонеидеальной детонации (ФГВ, 2008, № 2):
 - ✓ Мгновенное превращение ВВ в ПВ и выделение части калорийности, соответствующей первой стадии.
 - ✓ Медленное энерговыделение оставшейся части калорийности в полностью прореагировавших ПВ.
- Модель слабонеидеальной детонации описывает результаты экспериментов, в том числе диаметр-эффект и распространение детонации в криволинейных каналах, что является дополнительным подтверждением существования медленной стадии кинетики и корректности выбора ее параметров.

Применение модели слабонеидеальной детонации для описания результаты некоторых экспериментов

1. Диаметр-эффект. Квадрат – расчет по модели СНД, линии – пределы изменения экспериментальных данных (Campbell, 1976)

Расчетная форма фронта детонационной волны

2. Эксперимент по изучению распространения детонации ПСТ в полукольцевом зазоре 40/60 мм (Лобойко и др., 2004)

Разновременность выхода ДВ на наружную и внутреннюю поверхности ВВ в зависимости от угла поворота ДВ

Сборник статей

Содержит подробное изложение результатов, представленных в докладе, а также ряд других вопросов:

- Кооперативные эффекты в ПВ.
- Модель низкоскоростной детонации,
- Модель недосжатой детонации флегматизированных ВС
- и другие.

Соавторы работ, представленных в докладе

• Развитие физических моделей

А.Л. Жеребцов, М.В. Тараник, Д.В. Кочутин, А.Л. Кутепов.

РФЯЦ-ВНИИТО

• Математическое моделирование

А.С. Шнитко, С.К. Царенкова, Г.В. Коваленко, Д.А. Варфоломеев, В.В. Попова, М.А. Воробьева

• Измерения электропроводности ТАТБ М.М. Горшков, В.Т. Заикин, В.М. Слободенюков, О.В. Ткачев.

- Макрокинетику разложения гетерогенных кристаллических ВВ рассчитать из первых принципов пока что невозможно, но стало «более-менее» ясно, как это сделать, в принципе.
- Продуктивным является полуэмпирический подход, промежуточный между эмпирическим и первопринципным, когда моделируемые процессы анализируются на микро и мезо уровнях, и на этой основе строится физически обоснованная, хотя и приближенная, зависимость скорости энерговыделения в химических реакциях от параметров среды. Затем, по результатам детонационных экспериментов, производится тонкая корректировка этой зависимости.
- Надеюсь, что получили ответы на некоторые вопросы
 Б.Г.Лобойко и «что-то поняли» о связи микроструктуры ВВ и его детонационных характеристик.