Расчет параметров произвольных квантовых систем на основе реализованного алгоритма поиска собственных значений и собственных функций для уравнения Шрёдингера

Н.В. Юдина, А.В. Апороски, Н.Р. Садыков

Снежинский физико-технический институт Национальный исследовательский ядерный университет «МИФИ» E-mail: y_natalya@mail.ru

Аннотация

На основе двухслойной разностной схемы с весами, аппроксимирующей нестационарное уравнение Шрёдингера, был реализован алгоритм поиска собственных значений собственных функций в случае неявной схемы (σ =1). В качестве примера квантовых систем рассмотрены квантовые ямы с произвольными профилями потенциальной энергии. Проведено сравнение результатов численных решений с аналитическими результатами решения уравнения Шрёдингера.

Введение

Существует большое число методов, позволяющих определить собственные значения и собственные функции (векторы) различных мод [1, 2]. В случае самосопряженного (или эрмитово сопряженного) оператора собственные значения являются вещественными величинами. В этом случае говоря о симметричной проблеме собственных значений. В случае несамосопряженного оператора говорят о несимметричной проблеме собственных значений. Одним из таких методов определения собственных значений и собственных функции является модифицированный метод обратных итераций (или модифицированный метод Виландта [3]). В данной работе показано, что на основе двухслойной разностной схемы с весами, аппроксимирующей нелинейное двумерное (время плюс пространственная координата) уравнение Шрёдингера, реализуется алгоритм поиска собственных значений собственных функций в случае неявной схемы ($\sigma = 1$).

Реализованную программу можно использовать для моделирования процессов в наноструктурах: применительно к гетероструктурам (например, в каскадных лазерах [4, 5]) и к периодическим потенциальным полям [6] данный алгоритм можно использовать для определения собственных значений и собственных функций симметричной И антисимметричной мод для системы из двух потенциальных ям; применительно к квантовым точкам [7] рассмотреть задачу поиска собственных функций и собственных значений энергии для потенциальных полей с произвольным профилем (за счет взаимодействия электронов реализуется потенциальное поле с произвольным профилем, которые заведомо не имеют аналитических решений для мод) и т. д. Реализованный в работе алгоритм может быть полезным, например, при рассмотрении задач из работ [8]. В [8] рассмотрена одномерная квазирелятивистская проблема кулоновского взаимодействия атомного уровня для гамильтониана Дирака, записанного в виде матрицы 2×2. Рассмотренная в [8] задача аналогична задаче движения спиновой частицы (электрона) в кулоновском поле [9, 10].

Реализованный в этой работе алгоритм определённым образом аналогичен реализованному в [11, 12] алгоритму для световодов цилиндрической формы. Были проведены расчеты параметров одномодовых и многомодовых световодов [11, 12]. Работа [11] является обобщением работы [12]. В [11] на основе численного решения нестационарного скалярного волнового уравнения предложен итерационный метод определения собственных значений и собственных функций LP_{lm} -мод, где l = 1, 2, ..., m = 1, 2,.... На основе реализованного метода рассчитаны пятно моды и частота отсечки мод для световодов со степенными профилями показателя преломления [11]. Результаты расчетов сравниваются с результатами расчетов на

основе модели эквивалентного ступенчатого профиля показателя преломления [13, 14, 15]. В работе [12] в отличие от [11] рассмотрены только моды с l = 1.

Предложенный в работе метод определения собственных значений и собственных векторов аналогичен процессу нахождения их в методе Виландта [3]. Одним из достоинств такого метода является то, что он позволяет вычислить не весь спектр собственных значений, а только интересующие нас (задача является актуальной для квантовых точек с малым числом стационарных состояний).

Численные методы решения задачи

Будем искать решение волновой функции в виде:

$$\Phi(t, x) = \Psi(t, x) \exp(-iE/\hbar)$$
, где $E = const.$

В результате для планарного случая получаем одномерное нестационарное уравнение Шрёдингера с соответствующими краевыми и начальным условиями:

$$i\hbar \frac{\partial \Psi(t,x)}{\partial t} = -\frac{\hbar^2}{2m_e} \Delta_\perp \Psi + U(x)\Psi,$$

$$-\frac{L}{2} \le x \le \frac{L}{2}, \quad \Psi\left(t, x = \pm \frac{L}{2}\right) = 0, \quad \Psi(t = 0, x) = f(x),$$

(1)

где m_e – масса электрона, \hbar – постоянная Планка, для планарного (плоского) случая $\Delta_{\perp} = \partial^2 / \partial x^2$, f(x) – регулярная функция от переменной x.

Для уравнения (1) на отрезках - $L/2 \le x \le L/2$ и $0 \le t \le t_0$ введем равномерную сетку:

$$\omega_{h} = \begin{cases} x_{i} = ih - L/2, & i = 0, 1, 2, \dots, i_{\max}, & h = L/i_{\max}, \\ t_{j} = j\tau, & j = 0, 1, 2, \dots, j_{\max}, & \tau = t_{0}/j_{\max}, \end{cases}$$
(2)

и аппроксимируем нестационарное уравнение Шрёдингера (1) двухслойной разностной схемой [16]:

$$\frac{\Psi^{j}(i) - \Psi^{j-1}(i)}{\tau} = -\frac{i}{\hbar} \delta \hat{A} \Big(\sigma \Psi^{j}(i) + (1 - \sigma) \Psi^{j-1}(i) \Big),$$

$$\Psi^{j}(i = 0) = 0, \quad \Psi^{j}(i = i_{\max}) = 0, \quad \Psi^{j=0}(i) = f_{i},$$
(3)

где $\Psi^{j}(i) = \Psi(t = t_{j}, x = x_{i}) -$ сеточная функция, $0.5 < \sigma \le 1$, $\delta \hat{A} -$ разностный аналог дифференциального оператора $\delta \hat{H} = \hat{H} - E\hat{I}$.

$$\delta \hat{A} \Psi^{j}(i) = \left(\frac{\Psi^{j}(i-1) - 2\Psi^{j}(i) + \Psi^{j}(i+1)}{h^{2}} + U_{i}\Psi^{j}(i)\right) - E\Psi^{j}(i), \qquad (4)$$

где \hat{I} – единичный оператор, $U_i = U(x = x_i)$. Поскольку матрица $\delta \hat{A}$ является самосопряженной, то собственные значения матрицы будут вещественными величинами.

Решение будем искать в виде линейной комбинации собственных мод Ψ_m .

$$\Psi^{j}(i) = \sum_{m} C_{m}^{j} \Psi_{m}(i), \qquad (5)$$

где C_m^j – коэффициенты разложения сеточной функции $\Psi_m(i)$

Несложно показать, что при $\sigma = 1$:

$$C_m^{j} = \frac{1}{1 - i\tau(E_m - E)} C_m^{j-1}.$$
 (6)

Результаты численных расчётов

Была написана программа, позволяющая в соответствии с вышеописанной теорией реализовать для неявной разностной схемы (σ=1) алгоритм поиска собственных значений энергии и собственных функций четных и нечетных мод в потенциальных ямах со степенными профилями:

$$U(x) = \begin{cases} U_0 \left(1 - (2x/l)^{\alpha} \right), & |x| \le l/2, \\ 0, & l/2 \le |x| \le L/2. \end{cases}$$
(7)

где α – показатель степени, l = 10 nm – ширина потенциальной ямы, $L = 2l, U_0 = -1eV$.

Рис. 1. Профили потенциальных ям: сплошная кривая – прямоугольная потенциальная яма α → ∞; штриховая кривая – потенциальная яма с параболическим профилем α = 2; штрихпунктирная кривая – потенциальная яма со степенным профилем α = 1/3.

В таблице 1 приведены собственные значения энергий для мод в прямоугольной потенциальной яме, которые вычислялись численно (2-ой и 4-ый столбцы), и вычисленные аналитически в соответствии с (8) (3-ий и 5-ый столбцы).

$$E_m = U_0 + \frac{\hbar^2}{2m_e} \frac{\pi^2}{l^2} m^2, \quad m = 1, 2, 3, \dots,$$
(8)

Тобяти 1

				Гаолица Г
Номер	Расчетные	Результаты	Расчетные	Результаты
моды,	собственные	аналитических	собственные	аналитических
т	значения энергии	собственных	значения энергии	собственных
	нечётной моды,	значений энергий	чётной моды,	значений энергий
	$E_m^{{}_{\mu e q}}$, eV	нечетной моды,	$E_m^{\scriptscriptstyle vem}$, eV	четной моды,
		$E_m^{{}_{\mu e q}}$, eV	m.	E_m^{uem} , eV
1	-0,9845832	-0.9845833	-0.9951257	-0.9951257
2	-0.9424867	-0.9424876	-0.9670287	-0.9670287
3	-0.8725912	-0.8725998	-0,91099225	-0.9109932
4	-0.7753135	-0.7753702	-0.8273413	-0.8273414
5	-0.6512876	-0.6515511	-0.7165940	-0.7166500
6	-0.5014618	-0.5024415	-0.579523	-0.5798362
7	-0.3273863	-0.3308135	-0.4173164	-0.4181811
8	-0.1325459	-0.1327263	-0.2321477	-0.2496604
9			-0.0317866	-0.0318298

где *т* – номер моды.

На рис. 2 и 3 для случая с прямоугольной потенциальной ямой приведены нормированные на единицу расчетные зависимости (сплошные кривые) распределения плотности вероятностей 1-ой, 2-ой и 3-ей нечетных и четных мод. Маркеры соответствуют аналитическим решениям в бесконечно глубокой потенциальной яме (функции синуса или косинуса).

Рис. 2. Зависимость нормированных волновых функций $|\Psi_m^{\text{неч}}|^2$ нечетных мод от *x*: синяя сплошная кривая 1 соответствует первой нечетной моде *m*=1; красная сплошная кривая 2 соответствует второй нечетной моде *m* =2; зеленая сплошная кривая 3 соответствует третьей нечетной моде *m* =3. Метки **■**, • и **▼** – соответствуют аналитическим решениям для тех же мод.

Рис. 3. Зависимость нормированных волновых функций $|\Psi_m^{\text{чет}}|^2$ четных мод от *x*: синяя сплошная кривая 1 соответствует первой четной моде (*m*=1); красная сплошная кривая 2 соответствует второй четной моде (*m*=2); зеленая сплошная кривая 3 соответствует третьей четной моде (*m*=3). Метки ■, • и ▼ – соответствуют аналитическим решениям для тех же мод.

В случае бесконечно глубокой потенциальной ямы с параболическим профилем собственные функции и собственные значения энергии являются решениями обобщенного гипергеометрического уравнения:

$$\Psi_{m} = C_{m}\phi(x)H_{m}\left(\frac{(-8mU_{0})^{1/4}}{\sqrt{\hbar l}}x\right), \quad \phi = \exp\left(-\frac{\sqrt{-2mU_{0}}}{\hbar l}x^{2}\right),$$

$$E_{m} = U_{0} + \frac{2\sqrt{-2mU_{0}}}{\hbar l}(2n+1),$$
(9)

где $H_m(z)$ – полином Эрмита, постоянная величина C_m определяется из условия нормировки.

В таблице 2 приведены собственные значения энергий для мод в потенциальной яме с параболическим профилем. Во втором и четвертом столбцах таблицы приведены расчетные собственные значения энергий мод, в третьем и пятом аналитические собственные значения энергий.

				Гаолица 2
Номер	Расчетные	Результаты	Расчетные	Результаты
моды,	собственные	аналитических	собственные	аналитических
т	значения энергии	собственных	значения энергии	собственных
	нечётной моды,	значений энергий	чётной моды,	значений энергий
	$E_m^{\mu e q}$, eV	нечетной моды,	E_m^{vem} , eV	четной моды,
		$E_m^{{}_{\mu e q}}$, eV		E_m^{uem} , eV
1	-0.8821783	-0.8821783	-0.9598037	-0.9598037
2	-0.7272280	-0.7272280	-0.80465298	-0.80465298
3	-0.5726801	-0.5726801	-0.6499036	-0.6499036
4	-0.4185401	-0.4185401	-0.49555796	-0.49555796
5	-0.2649082	-0.2649082	-0.3416393	-0.3416393
6	-0.1132136	-0.1132136	-0.1885409	-0.1885409
7			-0.04153679	-0.0415367

На рис. 4 и 5 приведены нормированные на единицу расчетные зависимости (сплошные кривые) распределения плотности вероятностей 1-ой, 2-ой и 3-ей нечетных и четных мод в потенциальной яме с ограниченным параболическим профилем. Маркеры соответствуют аналитическим решениям в бесконечно глубокой потенциальной яме с параболическим профилем.

функций |Ψ^{неч}|² нечетных мод от *х* для потенциальной ямы параболического профиля: синяя сплошная кривая 1 соответствует первой нечетной моде (*m*=1); красная сплошная кривая 2 соответствует второй нечетной моде (*m*=2); зеленая сплошная кривая 3 соответствует третьей нечетной моде (*m*=3). Метки ■, • и ▼ – соответствуют аналитическим решениям (9) для тех же мод.

Рис. 5. Зависимость нормированных волновых функций $|\Psi_m^{\text{чет}}|^2$ четных мод от *х* для потенциальной ямы параболического профиля: синяя сплошная кривая 1 соответствует первой четной моде (*m*=1); красная сплошная кривая 2 соответствует второй четной моде (*m*=2); зеленая сплошная кривая 3 соответствует третьей четной моде (*m*=3). Метки ∎, • и ▼ – соответствуют аналитическим решениям (9) для тех же мод.

Для потенциальной ямы со степенным профилем 1/3 получены только расчетные результаты. Собственные значения энергии мод приведены в таблице 3 Таблица 3

		1 аблица 5
Номер	Расчетные собственные значения энергии	Расчетные собственные значения энергии
моды, <i>т</i>	нечётной моды, $E_m^{_{Hey}}$, eV	чётной моды, E_m^{uem} , eV
1	-0.36131068	-0.59316118
2	-0.19304497	-0.27610407
3	-0.08345064	-0.1394252
4	-0.004826105	-0.04323956

В случае такого профиля потенциальной энергии число мод меньше, чем для выше приведенных профилей (четыре нечетных и четыре четных мод (см. рис. 6 и 7)).

кривая 3 соответствует третьей нечетной моде (*m*=3); серая сплошная кривая 4 соответствует четвертой нечетной моде (*m*=4).

Рис. 7. Зависимость нормированных волновых функций $|\Psi_m^{\text{чет}}|^2$ четных мод от *х* для

потенциальной ямы со степенным профилем 1/3: синяя сплошная кривая 1 соответствует первой четной моде (*m*=1); красная сплошная кривая 2 соответствует второй четной моде (*m*=2); зеленая сплошная кривая 3 соответствует третьей четной моде (*m*=3); серая сплошная кривая 4 соответствует четвертой нечетной моде (*m*=4).

Заключение

При аппроксимации нестационарного уравнения Шрёдингера двухслойной разностной схемой с весами σ при σ = 1 реализуется алгоритм поиска собственных значений и собственных функций в одномерной потенциальной яме (планарный случай).

Результаты расчетов совпали с известными аналитическими результатами для потенциалов со степенными профилями. Это позволяет нам использовать эту программу для задач с произвольными профилями потенциальных ям.

Предлагается обобщить рассмотренный алгоритм на потенциальные поля с цилиндрической и сферической формами.

Список литературы:

- 1. Х. Д. Икрамов. Несимметричная проблема собственных значений: Перевод с английского- М.: Мир, 1983.
- Б. Парлет. Симметричная проблема собственных значений: Перевод с английского-М.: Мир, 1983.
- 3. H. Wielandt. Math. Z., 1944, v. 60, p. 93-143
- 4. Kazarinov R. F., Suris R.A.: Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Fiz. Tekh. Poluprov. 5, 797–800 (1971).
- N. R. Sadykov, A. V. Aporoski, D. A. Peshkov. Terahertz radiation generation process in the medium based on the array of the noninteracting nanotubes.// Opt. Quant. Electron., V. 48:358 (2016).
- 6. C.-H. Park, L. Yang, Y.-W. Son, M. L. Coohen and S. G. Louie, Nature Physics, V. 4, 213 (2008).
- 7. Бугров В. Е., Константинов, О. В. Учет кулоновского взаимодействия электронов и дырок в квантовых точках на основе InGaN // Физика и техника полупроводников 1998. Т. 32. № 10. С. 1235.
- 8. C. A. Downing, M. E. Portnoi, Phys. Rev. A 90, 052116 (2014).
- 9. Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Квантовая электродинамика (М.: Наука, 1989, 728 с.).
- 10. А. Ф. Никифоров, В. Б. Уваров, Специальные функции математической физики, Физматлит, М., 1978.
- 11. А. Н. Афанасьев, Л. А. Мялицин, Н. Р. Садыков, М. О. Садыкова. Численный метод определения частоты отсечки и пятна моды световодов. Известия Высших Учебных Заведений. Физика, т. 48, №1, с.11-16 (2005).
- 12. Ардашева Л. И., Садыков Н. Р., Черняков В. Е., // Квантовая электроника, т. 19, с. 903 (1992).
- 13. Гурджи С. П., Каток В. Б. // Радиотехника, №3, с. 64 (1989).
- 14. Marcuse D. // J. Opt. Soc. Am., v. 68, № 1, p. 103-109 (1978).
- 15. Белов А. В., Дианов Е. М., Игнатьев С. В. и др. Сравнение различных методов измерения параметров эквивалентного ступенчатого профиля ОВС // Квантовая электроника.1981. Т. 8, № 8, С. 1802.
- 16. А. А. Самарский, Теория разностных схем, Наука, М., 1989.