

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР всероссийский научно-исследовательский институт экспериментальной физики

ХІІІ ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ СВОБОДНО ВСПЛЫВАЮЩЕГО ПУЗЫРЯ ВОЗДУХА

Власов К.О. ФГУП «РФЯЦ-ВНИИЭФ» , г. Саров

2017

Цель работы

• Провести численное моделирование процесса всплытия пузырьков

воздуха в воде для диаметров: 1, 3, 5, 10 мм

- Определить параметры периодической траектории (период, амплитуду)
- Проанализировать течение в следе за пузырьком
- Сравнить полученные результаты с экспериментальными данными

Постановка расчетного исследования (1)

Уравнения Навье-Стокса в приближении несжимаемости с учетом многофазности:

$$\frac{\partial}{\partial t}(\rho \vec{U}) + \nabla \cdot (\rho \vec{U} \cdot \vec{U}) = -\nabla P + \nabla \cdot (\vec{\tau}) + \rho \vec{g} + \vec{F}_{vol}$$

$$\nabla \cdot \vec{U} = 0$$

$$\frac{\partial}{\partial t}(c_i \rho_i) + \nabla \cdot (c_i \rho_i \vec{U}) = 0$$

$$\rho = \rho_i \cdot c_i + \rho_j (1 - c_i)$$

$$= -\vec{\tau}$$

где ρ – плотность, U – скорость, P – давление, $\overline{\tau} = \mu(\nabla U + \nabla U^T)$ – тензор вязких напряжений,

 μ – динамическая вязкость, g – гравитационное ускорение, F_{vol} – внешние объемные силы,

 ρ_i – плотность *i*-ой фазы, c_i – концентрация *i*-ой фазы

- Уравнений Навье-Стокса решались методом SIMPLE
- Свободная поверхность между фазами определялась методом CLSVOF (Coupled Level-Set VOF)

Постановка расчетного исследования (2)

Сила поверхностного натяжения описывалась как непрерывная объемная сила:

$$\overrightarrow{F_{vol}} = \sigma_{ij} \frac{\rho \cdot (\nabla \cdot \vec{n} / |n|) \cdot \nabla c_i}{\frac{1}{2} \cdot (\rho_i + \rho_j)}$$

где σ_{ij} – коэффициент поверхностного натяжения, \vec{n} – нормаль к поверхности раздела

(метод Continuum Surface Force Model)

Геометрическая постановка задачи

 d_b – диаметр пузырька, h – высота инициализации пузырька, H – высота области, L – сторона основания области, ρ_1, μ_1 – параметры воздуха, ρ_2, μ_2 – параметры воды

Движущаяся система координат (1)

втекание со скоростью - U_b(t)

- Повышение точности
- Ускорение расчета

ХҮZ – неподвижная система координат Х'Y'Z' – движущаяся система координат U – скорость в системе координат ХYZ U' – скорость в системе координат Х'Y'Z' U_b – скорость всплытия пузырька U_m – скорость движения Х'Y'Z' $\vec{U}_m(t) = -\vec{U}_b(t)$

6 из 22

Так как система координат Х'Ү'Z' – неинерциальная:

$$\frac{\partial}{\partial t}(\rho \vec{U'}) + \nabla \cdot (\rho \vec{U'} \cdot \vec{U'}) = -\nabla P + \nabla \cdot (\vec{\tau}) + \rho \vec{g} + \vec{F}_{vol} - \rho \frac{d}{dt} \vec{U}_m(t)$$

Движущаяся система координат (2)

Движущаяся система координат реализована с помощью написания дополнительных модулей к основному алгоритму решателя.

Особенности реализации и введенные параметры:

- •Параметр **D_Um** определяет изменение $\mathbf{U}_{\mathbf{m}}$ по сравнению с предыдущим значением
- •Параметр S_Um определяет скорость $\mathbf{U}_{\mathbf{b}}$, по достижении которой $\mathbf{U}_{\mathbf{m}} \neq \mathbf{0}$
- •Параметр N_Um определяет частоту корректировки $\mathbf{U}_{\mathbf{m}}$
- •Все модули работали в параллельном режиме

Выбор оптимальной сетки

В качестве критерия выбора оптимальной сетки введена величина:

$$C_{control} = \frac{1}{V_0} \cdot \sum_{i=1}^{N} c_i V_i \quad \text{, где } c_i = \begin{cases} c_i, \quad c_i \ge 0.8 \\ 0, \quad c_i < 0.8 \end{cases} \quad V_0 = \frac{4}{3}\pi \cdot r^3 - \text{объем идеального сферического пузыря,} \\ V_i - \text{объем элементарной ячейки,} \\ c_i - \text{концентрация воздуха в } i - \text{ой ячейке} \end{cases}$$

• Оптимальный размер сетки: 20 ячеек на диаметр пузырька

Результаты расчетов. Форма пузырьков

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИК

Р. Ф. Н. Ц. ВНИИЗФ

научно-исследовательский институт экспериментальной физики Анализ траектории всплытия (1)

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР ВСЕРОССИЙСКИЙ

10 из 22

Траектория центра масс пузырька в координатах ХҮТ

11 из 22

российский федеральный ядерный центр всероссийский научно-исследовательский институт экспериментальной физики Анализ траектории всплытия (2)

Анализ траектории всплытия (3)

График зависимости амплитуды колебаний центра масс пузырька от времени

Расчетные значения амплитуды и периода

$d_{_b}$, мм	Амплитуда колебаний Х, мм	Амплитуда колебаний Ү, мм	$A = \sqrt{x^2 + y^2}, MM$	Период, сек
3.0	2.0	1.5	2.0	0.12
4.0	2.5	1.8	3.1	0.16
5.0	1.75	1.75	2.5	0.18
6.0	1.65	1.65	2.3	0.20
10.0	1.43	1.41	2.0	0.14

научно-исследовательский институт экспериментальной физики Сравнение с экспериментами

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР ВСЕРОССИЙСКИЙ

Зависимость скорости всплытия от времени

Анализ вихревого течения за пузырьком (1)

t = 0.175 sec

- $rot \vec{V}$ завихренность (вектор вихря)
- Величина (*rot*V)_гпоказывает частоту и направление вращения потока в плоскости **XY**

 $d_{\rm h} = 3 \, {\rm MM}$

Анализ вихревого течения за пузырьком (2)

• Процесс отделения колец сопровождается падением скорости всплытия

Циркуляции для различных контуров (1)

Теорема Стокса:

Свойство аддитивности циркуляции:

18 из 22

$$C = \iint_{\Gamma} \vec{V} dl = \iint_{S} rot \vec{V} \cdot \vec{n} dS \qquad C = \sum_{i=1}^{N} C_i$$

Циркуляция вектора скорости по замкнутому контуру, описывающему некоторую поверхность, разбитую на N ячеек:

$$C_{\vec{V}} = \sum_{i=1}^{N} \sum_{j=1}^{4} \vec{V}_{ij}^{\tau} \cdot a_{ij} = \sum_{i=1}^{N} rot \vec{V}_{i}^{n} \cdot S_{i}$$

 a_{ij} – j-ая сторона i-ой четырехугольной ячейки, \vec{V}_{ij}^{τ} – проекция вектора скорости на j-ую сторону i-ой ячейки (тангенциальная составляющая), S_i – площадь поверхности i-ой ячейки, $rot \vec{V}_i^n$ – нормальная составляющая $rot \vec{V}$ в i-ой ячейке

Циркуляции для различных контуров (2)

Проблема обработки больших данных

📰 ЗАДАЧА О ВСПЛЫВАЮЩЕМ ПУЗЫ	PE	_					
ПАРАМЕТРЫ ВЕЩЕСТВ							
Ввведите параметры веществ (по умолчанию вода-воздух):							
Плотность среды, [кг/м3] 998.2	Плотность пузыря, [кг/м3] 1.225	5 Коэф. пов. натяжения, [Н/м] 0.072					
Вязкость среды, [мПа*с] 1.003	Вязкость пузыря, [мкПа*c] 17.89	9 Уск. свободного падения, [м/с2] 9.81					
ПАРАМЕТРЫ РАСЧЕТА ▼ 3D РАСЧЕТ Диаметр пузыря, [MM] 3 Шаг сетки, [см] 0.015 Скорость сетки, [м/с] 0.1 Порог по концентрации: 0.8 АНАЛИЗ ФОРМЫ ПУЗЫРЯ ▼ Диапазон концентраций: От 0.8 до 1 Частота вывода формы: 1 РАСЧЕТ ТРАЕКТОРИИ, ФОРМЫ И ТЕЧЕНИЯ: ОТКРЫТЬ ПАПКУ	Стартовое положение по Z, [см] НИЖЕ ВЫБЕРИТЕ ВИДЫ АНА ДЛЯ ТЕКУЩЕГО РАСЧЕТ АНАЛИЗ ТЕЧЕНИЯ ЗА ПУЗЫРЕМ— Параметры сечений: МАХ расстояние от центра, [мм] Число сечений: МІN расстояние от центра, [мм] АНАЛИЗ ОДНОГО СЕЧЕНИЯ МАХ радиус круга, [мм] Число кругов: МІN радиус круга, [мм]	ВВЕДИТЕ СКОРОСТЬ ВСПЛЫТИЯ ДЛЯ ДАННОГО ДИАМЕТРА: Vt, [см/с] 20 Число Re Число Eo Число Eo Число Mo ЕТА Число We Число Ga 10 РАСЧЕТ КОНСТАНТ 10 ТОЛЬКО ВИЗУАЛИЗАЦИЯ СЛЕДА: 3 ОТКРЫТЬ ПАПКУ 8 10 1					

Преимущества программы:

- Быстрота обработки
- Универсальность
- Информативность

21 из 22

Интерфейс программы-обработчика

Заключение

- Расчетные значения периода и амплитуды траекторий, а также средняя скорость всплытия для всех приведенных размеров пузырьков согласуются с экспериментальными данными [1,2]
- Показано возникновение циркуляций в горизонтальной плоскости и изменение направления вращения на разных расстояния от оси пузыря
- Качественно возникновение периодической траектории объясняется наличием разнонаправленных циркуляций в плоскости ХҮ
- Обнаружены устойчивые колебания скорости всплытия пузырьков, а также их корреляция с колебаниями формы пузырька
- Создана программа-обработчик больших массивов данных с графическим интерфейсом

[1] R.C. Clift, J.R. Grace and M.E. Weber, Bubbles, Drops, and Particles, Academic, New York, 1978.

[2] A. Tomiyama, G.P. Celata, S. Hosokawa and S. Yoshida, Terminal velocity of single bubbles in surface tension force dominant regime // Int. J. Multiphase Flow, Vol. 28. 2002. P. 1497–1519.

