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Coaep>kaHue

Problems formulation

Differential: Lou=g,Pu=f
Finite-difference: Lyt = g", phyl =
Operator: A(Q) = f
Variational: J(q) = llACg) — £l

Theoretical results: unigueness theorems, conditional stability
estimates.
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Coaep>kaHue

Numerical methods:

Finite-difference scheme inversion;

Linearization q, =[A’(q,) ] X f; ;

Newton-Kantorovich method q..., = q, - [A(q,)]* (A(g, ) - ) ;
Gradient methods:

- Landweber iteration q,.,=q, - « [A(@.)]* (A(q,) - ) ;

- Steepest descent q,., =0, - &, J(Q,) ;
Gelfand-Levitan-Krein-Marchenko method;

Boundary control method.



Inverse problems for hyperbolic equations

Hyperbolic equations describing the wave processes are of great concern in
many domains of applied mathematics.

Waves comes through object and deliver information about its structure to the
surface.

Solutions of hyperbolic equations can contain non-smooth and singular
components. This leads to easier (compared with elliptic and parabolic cases)
inversion of the operator.

Usually inverse problems for hyperbolic equations are solved by minimizing the
residual functional. Iterative method of minimizing the functional requires the

solution of the direct (and, perhaps, adjoint) problem for every iteration of the
method.

In multidimensional case iterative methods for multidimensional inverse
problems are very timeconsuming.




Forward (Direct) Problem
1) c*(x YV, =AV—VInp(x,y)-VV,
yeR"™, x>0, t>0;

2) Vv |t<OE O, X=(X,,...X, )
3) v, (+0,y,t)=h(y)-o(t), yeR",teR /

) .

cx,y) > ¢, >0 (c,= const) is the velocity; - X

o y)> p, > 0 (p, = const) is the density;
V(x, ), t) is the exceeded pressure.

Inverse Problem: find the coefficients of equation (1) using additional
information:

(4) v(+0,y,t)=f(y,t), yeR", teR
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Finite-difference scheme inversion

The main idea of the finite-difference scheme inversion consists in the following: the
inverse problem is replaced by a finite-difference analogue and reduce to the
system of nonlinear algebraic equations.

The method of inversion of finite difference schemes is quite natural from a physical
point of view because it uses the theory of characteristics along which extends, as a
rule, basic information about the features of the solution of the direct problem and
of the investigated medium.

In the computational aspect (number of operations) method for the finite-difference
scheme inversion is equivalent to a solution of the corresponding direct problem and
allows the parallelization of the procedure of calculations.

Based on the projection method for the finite-difference scheme inversion can be
generalized to a wide class of multidimensional inverse problems, in the case of
sufficiently smooth with respect to horizontal variables.

The main disadvantage of the method: the inverse problem is not stable with depth
in the case of large measurement errors in the data.



Finite-Difference Statement of the Problem
Let us denote uf = u(ih, kh), g, = q(ih).
Then inverse problem (1) - (4) can be written in discrete form:
u“t —2uf +ut Uk, —2uf +ul ul, —u* _
7 A e i
U =S;; Uy =Nk

k+1

k—1
Uz +u
k _ Yo 0 2 ).
uy = z +o(h )

h h<
Sit1 :Z'(So "d +Si+1°qi+1)+§§ :Sj “q; +0(h2)-
it

Then we can formulate the inverse problem in finite-difference statement:

vy S
k+1 k-1 _ ,k k i+1 i—-1 .
Vi TtV _Vi+1+vi—1_Qi ‘h‘—2 )
i k k
VI = pl VO B f
k+1 k-1
i, 2 ’

h h <
Pi1 :Z'(po'Ao+ pi+1’Qi+1)+§§ : P;-Q;-
o1

We have to determine v/ and p;.



Finite-Difference Scheme Inversion

Now we consider the finite-difference statement of the inverse acoustic problem.
k k

Vik+1 +Vik—1 i |+1 Ai h. Vig 2V. 1. : i
| 1
Vi=Di, . N
Vg:fk; V1I(=M; 5| .
2 J o\
h NN N
pi+1:Z'(po'Ao+pi+1 +1 ij 7 , N
The algorithm of finite- dlfference scheme inversion is following: b
1) Find v,fand v/ using (4) and (5) respectively. oz
2) Determine pyand p, from (2). After we put A, = 2(,01 L) (hp,).
. - 4 P,
2) Determine A; for 20 —__4. i 1+_ j;
| A T (1A
) V_k _V_k
3) Find v, Aby known A: Vv, =V +v T —v + A -h-%;

4) Suppose p;,; = V., /*1;
5) Find A, and so on...



Gel'fand-Levitan-Krein-Marchenko method

Advantages:

This method overcomes nonlinearity of the problems — the nonlinear inverse
problem reduces to a system of linear integral equations

GLKM method in some sense is the direct method — there is no need to solve the
forward problem (no iteration process)

Short history

I.M. Gel’fand and B.M. Levitan (1951), M.G. Krein (1954) — first results
(spectral inverse problems)

V.A. Marchenko (1950-ies) — inverse scattering problem

A.S. Alekseev (1960-ies) — inverse seismic problem (A.S. Blagoveschenskiy,
V.I. Dobrinskiy, B. Gopinath, M. Sondhi, R. Burridge, W.W. Symes, e.t.c.)

M.I. Belishev (1987), S.I. Kabanikhin (1988) — two-dimensional



Gel'fand-Levitan-Krein-Marchenko method

Acoustics

Multidimensional nonlinear acoustic inverse problem (S.I. Kabanikhin, A.D.
Satybaev, M.A. Shishlenin, 2004)

Seicmics
Recovering of the Lame parameters and density of the medium
(A.S. Alekseev, 1967; V.S. Belonosov, A.S. Alekseev, 1998)

Scattering, tomography, optics, e.t.c.
Method of inverse scattering problem: integrating nonlinear equations (C. S.
Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, 1967): KdF (1D) and
Kadomtcev-Petviashvili (2D, V.E. Zakharov and A.B. Shabat, 1974).

Solving the GLM-equations for obtaining the solution of the nonlinear
Schrodinger equation (D.A. Shapiro, 2011; R.G. Novikov, 2014; S.K.
Turitsyn, 2015).



Gel'fand-Levitan-Krein method

Let us derive 2D analog of Gel‘fand-Levitan-Krein equation (Kabanikhin
(1988), Kabanikhin and Lorenzi (1999)).
We consider the family of direct problems (kZ)

ui =Au* -vinp(x,y)vVu*, x>0, yeR, t>0;
uk |t<OEO;

uy (+0, y,t) =e" - 5(t);

u“|,_,=US[H-.

We suppose that the trace of forward problem solution exists and can be
measured y

u (40, y,t) = f“(y,1t).




MeTtoa enbdaHaa-JleBntaHa-KpenHa

According to Kabanikhin (1977) we define the auxiliary family of forward problems
(meZ)

wy =AW" —VIn p(x, y)Vw", x>0,yeR,t>0;
w"(0,y,t)=e™-5(); w;(0,y,t)=0.

Solution can be represented in the form:

W (X, Y1) = S™(X, y) - [SOCH 1)+ S =)+ WX Y1), S™(x, y) = = /p(x’ y; e,

2\ p(0y

Solutions of initial direct and auxiliary problems are connected with the

following equality t
u(x,y,t) =Y. j fX(t—s)w™(x, y,s)ds.
m o

Letusdenote "™ (X,t) = ﬁ- W;E? ii’)t) dgdy.

Therefore initial inverse problem can be reduced to
the multidimensional analog of Gelfand-Levitan-Krein equation



The multidimensional analog of Gelfand-Levitan-Krein (GLK) equation

20K (x,1) = j £K (t—s)D™(x,5)ds = —f p((;kyy) dy,

Itk x, k=041+2, .

The solution of inverse problem can be obtained from the solution of
Gelfand-Levitan-Krein equation by formula

_n z’ (m) ) p-imy) i
P p(o,y){;q) HXEOe }

Therefore in order to find solution p(x,y) in the depth x, we can solve GLK
equation with the fixed parameter x, and then calculate p(x,,y) .
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N- approximation of M.G. Krein equation

X
2000,)~ ) jF(t — )0, s)ds =G,  te(—xx)k=-NNj=12
|m|sN —x

T
Here ®(x,t) = (cp(—N) (x,t), ..., DO (x, 1), ..., DM (x, t)) |
_ (o (-N) (0) oy cUpE e
G=(G"Y,..,6¢9, .,6M) nag Lk
N’ -N)' N’ N’
i famtl. -
(-N+1)’ (-N+1)' (-N+1)' (-N+1)'
fon fon+1 T e N
FO=| o o' = o .o
fon fover  — Jo Sy
™’ e
A gl o S




Boundary control method

The Boundary Control method is an approach to solving inverse problems based on
the control theory and systems. Method is justified on the basis of Riemannian
geometry, asymptotic methods for PDE, functional analysis and operator equations.

The method was proposed in 1987.
The dynamic variant of the method of boundary control is considered in the time
domain, which is a response of the operator (hyperbolic variant of the Dirichlet-to-

Neumann map).

The method provides optimal recovery time: the longer the observation time, the
larger the area in which the parameters will be restored.

This feature makes it the option most relevant in acoustics and Geophysics. The
algorithm was developed to recover the speed of the propagation of the waves.



Boundary Control Method

We consider the family of inverse problems (keZ)

ui =Au* -Vinp(x)Vu*, x>0, yeR, t>0;

u“| ,=0;

uf(+0 y,t) =e".5(t);
u' |, = LS.

u* | o= T AN

The solution of forward problem can be connected with solution to the
forward problem with arbitrary source U | =g(y,t) is following:

(XY, 1) = [u (X, y,t—s)- g, (s)ds.



Boundary Control Method

Let us consider the arbitrary function a(x,y)on xe/0, 7], y /-, =]
supposing a(x,y) =0 for x (1)L}, y €[-r, ].

The problem of control: find the source g();t) such that

u'(x,y,T)=a(x,y), xe[0,T], ye[-xx]

Sources g();t) are considered as functions
Ly of L,(/0, T]x[-z, =])and functions defined
on wave — as elements of space H, where
inner product in His defined

0 T L X

us(x,y,T)-u"(x, y’T)dxdy.

: ,’T’h ”TH:nL
(Lo, y,T).u"(x,y,T)) jj o



Boundary Control Method

Let {g,(,t)}, p=1,...,0is basis in L,([0,T]x[-n, z]). Then any sources can be
represented uniquely in series form. Further let u (x,y, T)=u(x,y,T)
Then u,(x,y,T)is basis in A, i.e. any function in 4 can be presented

a(x,y) = Za (% Y, T).

Approximate solution of boundary controI problem with defined function a(x,y) is
calculated with using finite system of sources {g,(y;t)}, p=1,...,\.

We consider the minimization problem of the discrepancy with respect «,,..., ay
N

a—> au (xy,T)
p=1

The minimizer a=(a1, ., ay ) Is solution to the system of algebraic equations

Zr a,=b;, j=LN;

in“n

where T, :( j(x, y,T),u, (X, y,T))H, b, :(a(x, y), u. (X, y,T))H.
We define the approximate solution of boundary control problem

fy (V1) =Z_)apgp(y,t)-

‘| €
o



Boundary Control Method

Then we write the following relations

N N N
HaHZH ~ |ay HZH :(leajuj(x, y,T),Z;apup(x, y,T)J :Z;“ij’
j= p= y =

7 L h g
Let us consider the quantity w"(t,s) = I j (%Y, tzxuy)(x Y:5) g xdy (30)
0 P

For O<t s<L we obtain (31):

& _ & | g
{at @s} & )___[, o ){gws)IZf (yst =)y (7) din h(yt)jzf (¥,5 7)) d7

From initial data it follows that  w"(0,s)=0, w™(0,s)=0, w"(t,0)=0. (32)
Using D’Alambert formula we obtain the solution to (31), (32). Then for t=s=T

T TT-2

WO(T,T) =~ [— T (y+0)jjh(y 5)d§jg(y n)dndedy (33)

TT-7

Hg(yn)danf (y,z+m)+£7(y,

. j —o z—1)] j h(y, &)déd wdrpdy.



Boundary Control Method

T ik
o sopsronn = Sl 20

One can show that coefficients of matrix 7"and components of vector b are
defined via { g}

TT-2

il (y+0)Hg (y. 5)d§jg (y,m)dmdady (34)

' :_I p(0,y) 4

Hg(yn)dnjz[f (yaz+)+ 7 (y.|r- n\)]jg(y £)déd wrdy.

_I(O)

ZT (y.t
b, = (a,ufl} =—% [[@ _t)ij((()x,/y)) dtdy.

: 1
]£ e o L ZN:ak-bk .
-7 p(T! y) dT n=1 ! !
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1)
2)

Conclusion and Remarks

FDSI gives exact solution for exact data. The method is not sufficiently
stal:t))lle in the case of large measurement errors in the data of the inverse
problem.

NK converges very fast but the initial approximation has to be in the close
neighborhood of the exact solution.

The BC-method and GLK method determine the solution of inverse
problem in particular point x; in depth without any special calculations of
unknown coefficients on the interval (0, x; ).

BC method allows to define unknoun velocity of wave propagation c(x,y)
if the density p(x,y) is known.

In the case of large measurement errors in the data or for sufficiently
large domain:

find the solution in points Xx;,...,x, using direct methods (BC and GLK);
calculate solution by NK, O, SD with fixed x,,...,X, .
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Introduction

B nacrosiiee BpeMsi, Oiaroaaps mioliaJHblM CHCTEMaM HAOIIOACHUM, YAAI0Ch CO3/1aTh
MPUHIMIIMAIBHO HOBBIM METOJI PEIICHUS TPEXMEPHBIX OOPATHBIX 3a/a4, B KOTOPOM
UCTIOJIB3YFOTCS:

- TpexMepHbIe aHaJioru ypaBHeHuil | enbdanga-JIeBurana-Kpeiina,

- IapaJuieJIbHbIC BEIYUCICHUS Ha BEICOKOIIPOU3BOIAUTEIIBLHBIX KIIACTEPAX,

- Meroabl MonTe-Kapiio,

- CcynepObICTPhIC AITOPUTMBI OOpaIIeHUs 0JI0YHO-TEIUIMIIEBBIX MaTPHIL OOJIBIITUX
Pa3MEPHOCTEM.

OCHOBHOMH MPOOJIEMOM UCCIEAOBAHNS TPEXMEPHBIX YIIPYTUX CPEJ SIBISCTCA OOIBIION
pazmep 00J1acTH, B KOTOPOl HEOOXOAMMO ITPOU3BOAUTH BHICOKOTOYHBIE BHIUHCIICHUS.

Jlaxxe 17151 CpaBHUTEIBHO HEOOIBIIOIO YYacTKa 2 KM X 2 KM X 2 KM pelIeHHE MPsIMO
3a71a4u CEHCMOPA3BEAKHU SIBISACTCS OYEHb CJIIOXKHOW MPOOIEMOM, a €CIU YUECTh, UTO
OOJILIIIMHCTBO COBPEMEHHBIX METOAOB PEIICHMSI OOpaTHBIX 3a/1a4 OCHOBAHBI Ha
UTEPALIMOHHBIX TIPOIEAYPax, TO JaKe KOJUUECTBO OIepaluii, TpeOyeMBbIX JJIsl TPOBEICHUS
HECKOJIbKUX UTEPAIUi, MOXKET IPUBECTU K HEKOHTPOJUPYEMBIM OIIHMOKaM.

DTO 00CTOSATENIHCTBO OCIOKHSICTCS CUIIbHONM HEKOPPEKTHOCTHIO OOpAaTHBIX 3a]1a4, KOTOPOE
3aKJIFOYAETCSA B HEEAUHCTBEHHOCTH PEIIEHHUS, 4 TAK)KE B HEYCTOMYHMBOCTH, KOTOPAsI CHIILHO
BO3pAcTaeT C TITyOHHOM.



