

FORMATION AND EVOLUTION OF PROTOSTELLAR DISKS

Dudorov A.E.¹, <u>Khaibrakhmanov S.A.^{1,2*}</u>

¹Theoretical physics department, CSU, Chelyabinsk ²Kourovka astronomical observatory, UrFU, Ekaterinburg

^{*}e-mail: <u>khaibrakhmanov@csu.ru</u>

Outline

- 1. Contemporary star formation
- 2. Our model
 - 1. Basic equations
 - 2. Numerical code Enlil
- 3. Results
 - 1. Disk formation
 - 2. Ionization fraction in the disk
 - 3. Magnetic field in the disk
- 4. Summary

Contemporary star formation

MOLECULAR CLOUD CORE (PROTOSTELLAR CLOUD)

STAR WITH PROTOPLANETARY DISK

Photo: Hubble Heritage Team (STScl/AURA), NASA

Magnetic field of young stellar objects (YSO)

MOLECULAR CLOUD CORE NGC 1333 IRAS 4A¹

¹Girart et al., 2006, Sci, 313, 812

PROTOPLANETARY DISK HL TAU²

²Stephens et al., 2014, Nat, 514, 597

Magnetic field of YSO

	Objects	B, Gs	method	Reference
Э!	Protostellar clouds	$10^{-4} - 10^{-5}$	Zeeman	Crutcher et al., 2004, ApJ, 600, 279
	Accretion disk FU Ori	10 ³	Zeeman	Donati et al., 2005, Nat, 438, 466
	T Tauri stars	1000 - 3000	Zeeman	Yang & Johns- Krull, 2011, ApJ, 729, 83
	Protosolar nebula	0.1 - 1	Remnant magnetization	Levy, 1978, Nat, 26, 481

Theory of fossil magnetic field

- The magnetic flux, $\int \vec{B} d\vec{s}$, of protostellar clouds is partially conserved during star formation
- The magnetic field of young stars with accretion disks is fossil one^{1,2}

Basic equations

MHD with Ohmic diffusion and magnetic ambipolar diffusion

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{\nu}) = 0, \tag{1}$$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\frac{1}{\rho} \nabla P + \frac{1}{4\pi\rho} \left[\operatorname{rot} \vec{B} \times \vec{B} \right] - \nabla \Phi, \tag{2}$$

$$\frac{\partial \vec{B}}{\partial t} = \operatorname{rot}\left[(\vec{v} + \vec{v}_{ad}) \times \vec{B}\right] - \operatorname{rot}(v_m \operatorname{rot} \vec{B}), \tag{3}$$

$$\rho \left[\frac{\partial \varepsilon}{\partial t} + (\vec{v} \cdot \nabla) \varepsilon \right] + P \nabla \cdot \vec{v} = 0, \tag{4}$$

$$\nabla^2 \Phi = 4\pi G\rho,\tag{5}$$

Equation of state: $P = (\gamma - 1)\varepsilon\rho$

Magnetic field diffusion

Ohmic diffusion – currents dissipation

$$\nu_m = \frac{c^2}{4\pi\sigma_e},$$
(8)
$$\sigma_e = \frac{e^2 n_e}{m_e \nu_{en}},$$
(9)

where *e* and m_e are charge and mass of an electron, n_e – electrons concentration, $v_{en} = \langle \sigma v \rangle_{en} n_n$ – collision rate, $\langle \sigma v \rangle_{en} = 10^{-7} \text{ cm}^3/\text{s}$.

 Magnetic ambipolar diffusion – the drift of plasma through the neutral gas under the action of the electromagnetic force

$$\vec{v}_{ad} = \frac{\operatorname{rot} \vec{B} \times \vec{B}}{4\pi R_{in}} \tag{7}$$

Ionization fraction

lonization equation¹

$$(1 - x_s)\xi = \alpha_r x_s^2 n + \alpha_g x_s n, \tag{6}$$

- $x_s = n_e/(n_e + n_i + n_n)$ ionization fraction
- ξ ionization rate
- α_r radiative recombinations rate
- α_g rate of recombinations on the dust grains

Ionization by cosmic rays and radionuclides is taken into account, as well as dust grains evaporation.

¹Dudorov, Sazonov, 1987, Nauch.Inform., 63, 68 (in Russian)

Numerical code

- Enlil two-dimensional code for modelling of the axi-symmetric MHD flows¹
- Based on the quasi-monotonic TVD-scheme of the high order. HLLDsolver is used
- Divergence cleaning generalized Lagrange multipliers method
- Puasson's equation alternating directions method
- Magnetic diffusion fully implicit absolutely stable scheme²

¹Dudorov, Zhilkin, Kuznetsov, 1999, Matem.Mod, 11(11), 109 (in Russian) ²Zhilkin, Pavlyuchenkov, Zamozdra, 2009, Astron. Rep., 53(7), 590

Problem statement and parameters

We consider uniform rotating cloud with uniform magnetic field

Problem statement and parameters

We consider uniform rotating cloud with uniform magnetic field

• Isothermal collapse: $\gamma = 1.001$

$$\frac{E_{th}}{E_G} = 0.3 \quad \frac{E_{\Omega}}{E_G} = 0.025 \quad \frac{E_B}{E_G} = 0.4$$

- Courant's number = 0.1
- Resolution: 150×150

Protostellar disk formation

Ionization fraction in the disk

Magnetic field in protostellar disk

 $B \propto \rho^{1/2}$ - magnetostatic contraction

Confirms assumptions of the kinematic MHD model of Dudorov and Khaibrakhmanov¹

Magnetic field in accretion disk

Simulation with the help of the kinematic MHD model with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and Hall effect¹

¹Khaibrakhmanov et al, 2017, MNRAS, 454, 586

Synthetic maps of polarized emission 1.3 mm

 «Dead» zone can be observed as the region of lowest polarization fraction

Khaibrakhmanov et al., 2017, MNRAS, 464, 586

Summary

- 1. We performed simulations of the collapse of the rotating protostellar cloud with strong magnetic field. Ionization model with radiative recombinations and recombinations on dust grains is implemented in the code.
- 2. The collapse leads to the formation of flattened envelope with the inner disk. Axes ratio of the envelope 1:2, radius of the inner disk 1000-3000 a.e., height-to-radius ratio of the disk 1:10.
- 3. Dead zones (region of very low ionization fraction) forms after the protostellar disk formation.
- 4. Magnetic field intensity depends on density as $B \propto \rho^{1/2}$. In confirms assumptions of the kinematic MHD model of accretion disks of Dudorov and Khaibrakhmanov.

Thank you for your attention!

